
NICTA Formal Methods Program

Workshop on Operating Systems Verification

University of New South Wales

5–8 October 2004

Proceedings

Gerwin Klein (editor)

NICTA Technical Report 0401005T-1

National ICT Australia is funded through the Australian Government’s Backing Aus-
tralia’s Ability initiative, in part through the Australian Research Council.

Copyright 2004 National ICT Australia. All rights reserved.

The copyright of this collection is with National ICT Australia.
The copyright of the individual articles remains with their authors.

Table of Contents

Towards a Verified, General-Purpose Operating System Kernel 1
Jonathan Shapiro, Michael Scott Doerrie, Eric Northup, Swaroop
Sridhar, Mark Miller

Future Directions in the Evolution of the L4 Microkernel 19
Kevin Elphinstone

Formal Security Analysis with Interacting State Machines 37
David von Oheimb and Volkmar Lotz

Verifying the L4 Virtual Memory Subsystem . 73
Harvey Tuch and Gerwin Klein

A Verification Environment for Sequential Imperative Programs in
Isabelle/HOL . 99
Norbert Schirmer

Preface

With society’s expanding reliance on information and communication technol-
ogy, the need to increase our level of trust in computing and networking infras-
tructure is one of the critical challenges facing the ICT field. A number of groups
around the world address this challenge by conducting research projects on the
development of formally verified operating systems kernels.

The NICTA workshop on operating systems verification brought together
invited researchers engaged in these projects. It was held in Sydney, Australia,
at the Kensington campus of the University of New South Wales. The formal
presentations on 5 October 2004 gave an overview of the state of current research
and approaches; the rest of the week was marked by very productive informal
presentations and discussions.

These proceedings contain the following workshop contributions. Jonathan
Shapiro et al (Johns Hopkins University) attempt to create a verified general
purpose operating system implementation, and show why they believe that there
is a reasonable chance of success. Kevin Elphinstone (NICTA) introduces L4 as
an example microkernel, overviews selected embedded applications benefiting
from memory protection (focusing mostly on security related applications), and
examines L4’s applicability to those application domains. David von Oheimb
and Volkmar Lotz (Siemens AG, Munich) describe a framework for modeling and
verifying reactive systems, and demonstrate it on two examples: the LKW model
of the Infineon SLE 66 smart card chip and Lowe’s fix of the Needham-Schroeder
Public-Key Protocol. Harvey Tuch and Gerwin Klein (NICTA) use the theorem
prover Isabelle/HOL to build an abstract model of the virtual memory subsystem
in L4, prove safety properties about this model, and then refine the page table
abstraction, one part of the model, towards C source code. Norbert Schirmer
(Technical University Munich) develops a general language model for sequential
imperative programs together with a Hoare logic, integrated into Isabelle/HOL.

Gerwin Klein
Sydney, November 2004

Towards a Verified, General-Purpose Operating
System Kernel�

Jonathan Shapiro, Ph.D., Michael Scott Doerrie, Eric Northup, Swaroop
Sridhar, and Mark Miller

Systems Research Laboratory
Department of Computer Science

Johns Hopkins University

Abstract. Operating system kernels are complex, critical, and difficult
to test systems. The imperative nature of operating system implementa-
tions, the programming languages chosen, and the usually selected im-
plementation style combine to make verification of a general-purpose
operating system kernel impractical. While security policies have been
verified against models of general-purpose operating systems, no verifica-
tion has ever been accomplished for a general purpose operating system
implementation.

This paper summarizes how we are attempting to create a verified general
purpose operating system implementation for Coyotos, the successor to
the EROS system, and why we believe that there is a reasonable chance
of success.

Introduction

The current state of affairs in computer security and reliability is unsupportable.
We must find ways to build software systems that are robust and survivable, and
develop techniques and tools that can bring these development practices into
mainstream product development. The problem is foundational: there exists,
in principle, no evolutionary path from current operating systems technology
to a secure or survivable alternative. Without an operating system on which
applications can rely, secure applications and defensible systems are impossible
to build.

The only technique currently known that will allow us to build an operating
system of the required robustness is formal verification. Verification has been
successfully applied to various special-purpose critical software systems (most

† Copyright © 2004 Jonathan S. Shapiro, Michael Scott Doerrie, Eric Northup, Swa-
roop Sridhar and Mark Miller. All rights reserved. This document may be reproduced
in its entirety in electronic or paper form without royalty or fee, provided that at-
tribution is preserved and this copyright notice is retained.

notably critical flight control software), and it has become a key part of com-
mercial microprocessor development, but it has not been successfully applied to
a general purpose operating system kernel. There are several reasons for this:

– Few operating system designs incorporate a rigorous notion of what consti-
tutes a “correct” or “consistent” state of the system.

– Few people who write operating systems understand verification.
– Current systems programming languages have no formally defined semantics,

and suffer from problematic ambiguities.
– Most operating systems have no clearly identifiable “unit of operation”

boundaries in the execution of the system where the system state is (alleged
to be) consistent. This makes correctness verification difficult or impossible.

– Most kernels use non-preemptive multithreading within the kernel.1 Even on
single processor systems, multithreading creates an exponential explosion of
the state space that the prover must consider — far beyond what is currently
feasible to verify.

– Imperative programming languages also create an exponential explosion of
the state space that the prover must consider.

– Provers, with the notable exception of ACL2, might fairly be said to present
a “programmer hostile” interface. The language of expression used by the
prover needlessly departs from the language used by the programmer, im-
posing a significant conceptual translation burden on the developer.

– Projects that contemplate the use of verification tools often relegate respon-
sibility for verification to a side team in order to relieve programmers of
the “burden” of verification. One result is systems that cannot be verified
because their authors don’t know how.

Given these issues as initial conditions, it is understandable that verification is
not a high priority for operating system developers in the wild. In spite of this,
there are at least three results which suggest that verifying a suitably structured
microkernel system may now be feasible:

PSOS (1980) While the system was never completed, a substantial framework
for verification was crafted for the PSOS system. This work had heavy in-
fluence on the subsequent evolution of nqthm and later ACL2.
See: A Provably Secure Operating System: The System, Its Applications, and
Proofs [9].

KIT (1989) Bevier’s verification of the KIT kernel against a simple micro-
processor model is of approximately the same order of complexity as the
verification required for a modern microkernel.
See: Kit: A Study in Operating System Verification [2].

1 The UNIX kernel’s sleep() call, for example, typically causes a context switch into
a different kernel continuation.

2

VLISP (1995) The VLISP project’s successful verification of the pre-scheme
compiler and runtime system similarly suggests that programs of the size
and complexity of modern microkernels should be “within reach” of modern
automated provers, provided they can be implemented in a suitable language.
See: The VLISP Verified Scheme System [5].

The Hopkins Systems Research Laboratory is starting work on the Coyotos
kernel, a successor to the EROS system [13]. As part of this, we are trying to
achieve a verified implementation of the kernel and the system’s key utilities.
We are pursuing this for several reasons:

– It is an intrinsically interesting research challenge.
– We are attempting to build a system that exceeds the requirements for EAL7

evaluation under the Common Criteria evaluation scheme. We believe that
a fully verified correspondence argument for the implementation is easier to
achieve, more rigorous, and easier to maintain than the semi-formal corre-
spondence required for EAL7 evaluation.

– An “open proofs” system (one in which both the system code and the verifi-
cation of correctness are public) would serve as a public example of how to go
about building a robust, secure system. It would allow customers to hire in-
dependent experts to validate the verification. It would allow experimenters
to attempt changes to code and proof as a learning vehicle.

– An open source, open proofs demonstration that verified systems are possible
may fundamentally change both user expectations about critical systems
and the “standard of diligence” that must be established to sustain claims
of non-liability for critical system software flaws.

– We don’t see any other way to get to long-term survivable software systems,
especially for critical infrastructure.

For kernels and similar critical systems, we need to know that all operations
terminate in a (tightly) bounded number of steps. This means that verification
must be concerned with establishing total correctness properties. The EROS
system is unusual in having a rigorous notion of consistency, an existing formal
system model (with a successful paper verification [14]), and a well-defined notion
of “unit of operation” (it is an interrupt-style kernel). Bounded time operations,
and therefore termination, were a specific and pervasive concern in the EROS
design (and its predecessors). Every invocation on the EROS kernel honors the
ACID properties, which allows us to express system call semantics as atomic,
consistency-preserving transformations on a well-defined system state. Coyotos,
the EROS successor, retains these properties and significantly reduces both the
semantic and implementation complexity of the kernel.

A key problem we face is the problem of programming language. There exist
languages such as ML that are strongly typed and formally specified. While
considerable work would be required, it is in principle straightforward to take an
approach similar to that of ACL2 [7]: capture a full semantics for an ML language

3

subset (notably exluding the module system) in an automated prover, and reason
about programs written in this subset. Unfortunately, ML and similar languages
have several key limitations from the perspective of kernel development:

– They do not provide machine-level, fixed size representation types.
– They provide insufficient control over low-level data layout. In particular,

systems codes require the ability to specify both unboxed composite types
and unboxed references. This is both a performance and a correctness issue;
the layout of certain data structures is dictated by the underlying hardware.

– The incorporation of full tail recursion in the language specifications means
that high-performance compiler implementations cannot exploit C as a struc-
tured assembly language [1] [16]. This significantly increases the cost of im-
plementing a suitably modified subset of these languages. Fortunately, full
tail recursion is not a real-world requirement. In practice, a more constrained
form of tail recursion is probably sufficient.

– Most safe languages rely intensively on dynamic memory allocation. In some
cases this reliance is embedded so deeply that it is impossible to write pro-
grams that do not allocate memory dynamically. Kernels must be capable
of operating with predictable variance in a fixed-memory environment. Dy-
namic allocation renders this problematic.

– With the exception of ACL2, no existing language provides means to in-
tegrate theorems and their proofs into the body of the program. From an
assurance and robustness perspective, these meta-statements about the pro-
gram are as important as the program itself.

In light of this, a key challenge for the Coyotos effort will be defining a pro-
gramming language whose unambiguous semantics can be formally specified in
mechanical form, is capable of capturing the efficiencies of low-level representa-
tion, and can be successfully used by hardcore systems programmers.

The balance of this paper briefly highlights some relevant attributes of the EROS
system architecture, our current plans for the evolution to Coyotos, our approach
to building an implementation language, and some of the properties that we
would ultimately like to verify.

EROS

EROS is a high-performance, capability-based operating system that runs on
conventional microprocessors [13]. It minimally requires a processor that provides
paged memory management hardware and a reliable separation between user and
supervisor execution. The current version of EROS executes on the Pentium
processor family. The predecessor system, KeyKOS [4] has been ported to the
Motorolla 88000, the IBM System/360, and the Sun SPARC processor families.

Along with the L4 system [11], EROS stands as one of two major remaining
microkernel-based research systems. Where L4 has historically focused on sys-

4

temic performance issues in microkernel-based systems, EROS has focused pri-
marily on security. Where L4 has shown that microkernel-based systems can
be fast, EROS has shown that they can also be protected without sacrificing
performance.2

System Model

The architectural model of EROS is that the kernel provides a protected exten-
sion of the underlying microprocessor, augmenting the hardware features with
support for kernel-protected capabilities and implementing a canonical interface
to the system’s memory mapping and exception handling mechanisms using ca-
pabilities as the fundamental protection mechanism.

One may view the execution of an EROS system as the steps of a sequential
state machine whose transitions consist of:

– Execution of a single, user-mode machine instruction, or
– Delivery of an exception notification to a user-level fault handler via IPC,

or
– Execution of an application-initiated “invoke capability” exception, or
– Processing of some pending interrupt event, which may cause a preemption

of the current user process.

This view of EROS in terms of an explicit operational semantics is founda-
tional in the EROS security model. The execution of an EROS system begins
in a hand-constructed consistent state, and the continued security of the system
rests on an inductive argument that every instance of the operations identified
above performs an atomic, consistency-preserving transformation on the global
system state. To support the logic of this argument, EROS is transparently per-
sistent. Every few minutes, an instantaneous global checkpoint is taken of the
entire system state. This snapshot is then incrementally written to disk as ex-
ecution proceeds. When the system powers up, it resumes execution from the
most recently saved checkpoint image.

A key underlying aspect of this model is that EROS kernel invocations are
atomic. Every kernel invocation (including IPC) proceeds in two phases:

Prepare During the prepare phase, all required resources are determined to
be in memory and are pinned in memory for the duration of the current
operation. If an object is to be mutated by the current operation, the prepare
phase reserves sufficient space in the system checkpoint area to hold the
modified version of the object.

2 This characterization is not entirely fair. The L4 effort has pursued a number of
areas, including real time systems and control of systemic performance, that have
not been addresed by the EROS effort.

5

Action During the action phase, the requested operation is performed. By both
design and requirement, the action phase is not permitted to fail. More
precisely, the only form of failure permitted during the action phase is to
halt the machine. This may occur, for example, if memory is discovered to
have an ECC error. During the action phase, the process is not permitted
to block, and the kernel is obligated to execute the current invocation to
completion.

During the prepare phase, no “semantically observable” modification to the sys-
tem state is permitted. Changes to kernel caches, rewriting of internal kernel data
structures into alternative representations, and queuing of invoking processes on
event completion queues in the kernel are not considered to be semantically
observable events.3

EROS is an interrupt-style kernel. In the event that some action occurs dur-
ing the prepare phase that might violate a correctness precondition previously
established during the prepare phase, the current system call is restarted from
scratch. No kernel stack is ever retained by a blocked process. Because no se-
mantically observable mutations have been allowed during the prepare phase,
this “abandon and restart” policy is always safe (though it does introduce proof
obligations concerning liveness properties).

At some well-defined point on every static control flow path in the kernel, there
is a conceptual boundary line that we refer to as the “commit point.” This line
marks the transitional control point between the prepare phase and the action
phase. In the current kernel implementation, there is an explicit call to an inlined,
empty procedure at every commit point. This allows us to use static control flow
model checking to verify both that semantically observable mutations occur only
after the commit point and that no process performs any action after the commit
point that might block.

Finally, there is a global design requirement that every kernel path must complete
in O(1) steps — that is, within a known constant number of instructions. In fact,
we require that this be a (somewhat fuzzily expressed) small constant bound.
Indeed, one of the significant changes between the earlier KeyKOS system and
the current EROS design was the elimination of the last kernel operation that
lacked a small constant time bound.

Though neither the KeyKOS nor the EROS designers realized it at the time, both
groups informally but rigorously introduced measure conjectures into the system
implementations. With the benefit of deeper hindsight, all of the recursive and
iterative algorithms of the EROS kernel have straightforwardly stated and veri-

3 Process en-queuing is observable in the form of latency, but this type of observation
has no effect on the overt security properties of the machine.

6

fiable measure conjectures. KeyKOS, with the exception of a single scheduling-
related algorithm, also had this property.4

Capability-Based Protection and Access Control

Without exception, every operation performed by an EROS application, includ-
ing the execution of non-privileged instructions, may be expressed as a capability
invocation. For normal instructions, the process is implicitly invoking a process
capability to itself in order to rewrite its register state. For kernel calls, the ca-
pability invoked is directly identified in the invocation. For memory operations,
the capability to the object ultimately manipulated (the page) is reachable by
traversing a path beginning from the per-process address space capability, and
computing the path access rights as an aggregation of the stepwise permissions
granted by each capability in the path. Finally, exceptions may be modeled as an
invocation of a capability to the appropriate fault handler. In consequence, the
permission to perform any action is straightforwardly defined, easily checked,
and conveniently accumulated during the traversal of a referencing path that
needs to be traversed in any case to locate the target object of the operation.

In most capability systems, the permission accumulation rule is to begin with
maximal permission and compute the intersection of these initial permissions
with the stepwise permissions as the path is traversed. In the EROS system, the
weak access restriction somewhat complicates this rule.

The weak access restriction provides a “transitive read-only” permission. There
is (transitively) no way to obtain any capability that conveys mutate authority
by proceeding from a weak capability. In practice, this restriction is performed
stepwise: fetching a capability (even within the kernel) from an object named by
a weak capability returns a weakened variant of the fetched capability: one whose
access restrictions include both read only and weak. In some cases, this down-
grade is performed conservatively by returning an invalid capability. Because the
next capability at each step in the path traversal is conditionally transformed
based on the permissions of the currently traversed path prefix, the simple accu-
mulation rule must be replaced by fusing the accumulation of permissions into
the operational definition of path traversal. This fusion proves to be useful, as it
helps to reduce the possibility of a discrepancy between the traversals performed
by the machine and the traversals permitted by the machine.

The weak access right is not essential from the standpoint of expressive power. A
system without it can be constructed in such a way as to preserve overt confine-
ment and partitioning. The weak access right is essential from the standpoint of
resource efficiency and performance. Using the weak access right, for example,
4 In KeyKOS, the flush algorithm for the meter tree could hypothetically visit every

meter node in main memory. While this visitation is bounded by the size of memory,
and a bounding measure conjecture can therefore be stated for it, it does not satisfy
the “small constant bound” design objective shared by the two systems.

7

it becomes possible for two processes to share access in copy-on-write form to a
common read-only graph of objects, even if the shared graph contains internal,
write-authorizing capability references. This proves to be a significant enabler
for some common microkernel design patterns, most notably the use of user-
defined memory fault handlers. The weak access right also significantly reduces
the number of operations that must be monitored and interposed by a reference
monitor to implement mandatory access control policies.

The EROS confinement mechanism is constructed on top of the weak right.
Lampson defines confinement as inability to communicate over unauthorized
channels [8]. The EROS constructor mechanism enforces overt confinement (i.e.
confinement ignoring covert channels). While this mechanism does not com-
pletely satisfy the Lampson definition, the enforcement of covert channel restric-
tions is largely an orthogonal problem. In EROS, a process is overtly confined
iff it can be shown that all of its authority to mutate originated with capabil-
ities provided by the instantiating client. That is, all of the initial capabilities
held by the program instance at instantiation time are (transitively) immutable.
This test is implemented by a user-mode, trusted application: the constructor.
The constructor performs a static test prior to instantiation to validate that all
of the immediate initial capabilities (as opposed to those that are transitively
reachable from these) are either:

– Trivially safe kernel-implemented capabilities, or
– Weak (therefore transitively immutable), or
– Capabilities to another constructor that in turn certifies its instantiations as

confined. This is acceptable because the constructor is trusted code and one
constructor is able to authenticate another. This case provides an inductive
extension of the previous two rules, and enables instantiation of complex
confined subsystems with rich behavior.

It has been demonstrated in the KeySafe [10] system that the constructor pro-
vides a sufficient foundational mechanism to implement mandatory access con-
trols such as multilevel security. Of perhaps greater pragmatic importance, per-
vasive use of the constructor as a process instantiation mechanism provides a
foundation for defense in depth, as demonstrated in the EROS network stack [12]
and the EROS trusted window system [15].

Resource Allocation

If we are to reason about the total correctness of a system, resource allocation is a
critical concern. In order to return a correct result, a process must have sufficient
space and compute time. This introduces a proof obligation concerning resource
allocation that must be discharged. Determining resource sufficiency is possible
if the maximal resource requirements of all processes are fully known and the
system is sufficiently provisioned. This specialized solution can be extended using

8

temporal non-interference reasoning to further cases, but in general the resource
sufficiency problem is intractible.

From the kernel perspective, it is necessary either to reason explicitly about
resource allocation or to somehow avoid such reasoning. EROS takes the lat-
ter approach by eliminating kernel resource allocation altogether. The kernel is
responsible for the safety of kernel resources, but it is not responsible for the
allocation of these resources. Responsibility for resource allocation is delegated
to (trusted) application level code.

In EROS, this property is slighty relaxed by allowing the kernel to cache pro-
tected state for performance reasons. In some sense, this form of caching mul-
tiplexes a fixed resource over unbounded usage demand, but the kernel design
ensures that every cache can either be discarded without observable semantic
consequence (again barring latency) or written back into some definitive repre-
sentation object that was allocated by a user-level allocator. The end result is
that the kernel is entirely deadlock-free.

This design approach extends to address space mapping structures as well. In
EROS, the address space of a process is defined by explicitly user-allocated
data structures called nodes. The hardware mapping tables are constructed by
the kernel on demand by traversing the node structures, which are the definitive
statement of the mapping. The hardware structures are managed as a discardable
cache. In addition to its role in address space definition, the EROS node structure
is also used as the persistent representation of process state.

The EROS address space definition approach is in contrast to the L4 map oper-
ation, which implicitly allocates a kernel mapping database node. The difficulty
with the mapping database node is not that it is implicitly allocated,5 but that
its state is definitive and unaccounted. If the mapping database node is dis-
carded, it is not always possible to reconstruct the mappings that depended on
that mapping database node. This induces restrictions on application use of the
L4 map operation in order to ensure that the mapping database nodes can be
discarded. To our knowledge, no current L4 implementation treats the mapping
database as a cache, and the practical design implications of such treatment have
not been explored in current L4-based systems.

From EROS to Coyotos

Coyotos is the successor to the EROS system. While EROS has satisfied most of
our research objectives, the system suffers from several practical impairments:

5 The map operation can be implemented in such a way that every map invocation
allocates exactly one mapping database node, so the database node allocation may
be viewed as explicit rather than implicit. The L4 specification, however, does not
require such an implementation.

9

– Though it simplifies security reasoning, transparent persistence is not cleanly
compatible with translucent network operations.
Persistence is removed in Coyotos.

– The EROS node data structure, which was introduced to support persistence,
complicates both the implementation and the specification of the system:
• In effect, EROS nodes reify capability storage, and require us to reason

about kernel memory type safety in layered fashion. While the atomicity
properties of the kernel interface make this possible, the constraints are
difficult to understand and to reason about (formally or informally), and
they significantly complicate the kernel implementation by introducing
what may be thought of as cache coherency constraints across different
representation caches.
• EROS nodes do not provide a convenient representation of address spaces.

Nodes have 32 slots, and this induces a structural constraint that shared
subspaces must be expressed as aggregations of 32k page units. In prac-
tice, this constraint has proven onerous for applications.

The node structure is replaced in Coyotos by first-class kernel process struc-
tures and a new memory mapping structure called a prefixed address trans-
lation tree.

– EROS and KeyKOS intentionally omitted non-blocking messaging from the
system primitive set. Similar effects can be achieved by using additional
threads as message posting agents. Unfortunately, the result is both slow and
pragmatically complicated. Without non-blocking notify, certain commonly
used mutual exclusion patterns involving transmissions combining data and
capability payloads through shared memory are very difficult to construct
efficiently.
Coyotos incorporates a non-blocking event posting mechanism.

– The current EROS IPC mechanism does not handle multithreaded receivers
gracefully, and therefore fails to adequately encapsulate details of server
implementation.
Coyotos will incorporate explicitly named communication endpoints.

– EROS implemented (in the kernel) per-process capability registers. This
proved to be constraining for applications that needed to manage large num-
bers of capabilities. A capability address space model was introduced late in
the EROS design cycle, but was never integrated effectively into the capa-
bility invocation operation.
Coyotos will provide more direct support for capability address spaces.

Explicit communication endpoints are a new feature in Coyotos, but with this
exception all of the differences mentioned above are simplifications of the existing
system that preserve all of the existing EROS design properties and constraints.
The revised invocation mechanism can likewise be implemented without violat-
ing the EROS design constraints. While there are “systems” experiments that
we intend to conduct with Coyotos, we are explicitly trying to restrict the core
Coyotos architecture to refinement and simplification rather than invention.

10

By far the most significant change in the Coyotos effort is that the kernel imple-
mentation, and the re-implementation of critical system services borrowed from
EROS, will proceed using a systems programming language with a mechanically
specified formal semantics.

BitC: A Language for Systems Programmers

We have identified in the introduction the main deficiencies of existing languages
from the perspective of kernel development: the absence of machine-level rep-
resentation types and data layout control, and the inability to write programs
that run without dynamic allocation. Clearly, we require a language with an
unambiguous formal semantics that can be mechanically captured.

It is often stated that aliasing is a fundamental impediment to analysis in lan-
guages such as C. While true, we suggest that this view is misleading. C intro-
duces many unnecessary aliasing concerns, but the problem of aliasing cannot be
eliminated by subsetting the C language. Kernels are inherently alias-intensive
programs, and reasoning about the effects of assignments through aliases is an
unavoidable part of the problem of kernel verification. For this reason, we have
not listed alias elimination as a language requirement. Pragmatically, it is ex-
tremely helpful to have a language in which idiomatic “false” aliasing can be
eliminated or reduced. It is also helpful to have a language in which the use
of idiomatically induced assignment can be eliminated, e.g. through use of tail
recursion as an alternative to looping constructs.

One advantage to writing a workshop paper after the workshop is that the paper
has the opportunity to reflect some of what has been learned in the workshop. In
our case, the impact has been substantial. At the workshop, we introduced BitC
as a language in the intersection between Scheme and C. We added machine-level
representation types and C-style structures to Scheme, eliminated operations
that allocated storage (including closure values), and prohibited mutation of
local variables. One goal of the BitC design was to arrive at a language that
could be directly emitted to C in a very small code generator — small enough to
be credibly validated by inspection. Eventually, we intend to generate machine
code directly.

Following the discussions at the workshop, our ideas about BitC evolved signif-
icantly. We came to realize that significant transformations on BitC programs
would be required to rewrite programs into a form suitable for direct code gen-
eration, and that these transformations would ultimately need to be verified.
While the kernel subset language must still avoid dynamic allocation, the key
issue in the language from a verification perspective is termination reasoning
rather than dynamic allocation. This led us to reframe some of our restrictions:

– BitC must enable the developer to straightforwardly author programs that
do not dynamically allocate storage (and we need to provide tool support to
check this). BitC need not prohibit dynamic storage allocation.

11

– The complete elimination of closure values was excessive. The actual require-
ment for kernel programs is to prohibit upward escaping closure values that
capture local bindings (because these require dynamic allocation). There is
no difficuty in using closure values defined at top level, or closure values that
might be hoisted to top level without alteration of meaning. This alteration
allows us to re-introduce some idioms for data structure traversal that must
otherwise be expressed less directly.

Subsequent to the workshop, we introduced several new design elements into
BitC:

– Parametric polymorphism supported by pattern matching and a type infer-
ence mechanism.

– Tail recursion, but limited to the case in which all of the procedures par-
ticipating in the tail recursion requirement are bound simultaneously in the
same letrec-like form.

– Higher-order procedures, but using a surface syntax that discourages curried
invocations. Because the use of escaping closure values is prohibited in the
kernel subset, curried procedures cannot be used within the kernel.

– An ML-like tuple and datatype model.
– Vector types

Finally, there was one obvious issue that we addressed only obliquely (as “C-
style structures”) at the workshop: the need for unboxed aggregates and unboxed
references. These have now been incorporated into BitC. These features in turn
require us to ensure that the temporal scope of references must be bounded by the
temporal scope of the referenced object, but this appears to be straightforward.

The provisional result appears to be a language with an unambiguous formal
semantics that can be used to implement critical applications (including the BitC
compiler). BitC has a clean subset in which the kernel can be implemented. The
resulting language should probably no longer be thought of as “an intersection
of C and Scheme.” Rather, BitC is best viewed as ML with representation types
and unboxing, the module system excised, and a parsable, lisp-like concrete
syntax. Also, BitC discourages currying in favor of tuplization. As the language
design progressed, we gained new appreciation for the “minimal mechanism”
character of ML. The foundational semantics of the current BitC language is
not substantially larger that than of the workshop version. Matters are now
sufficiently far along that we are examining how to introduce measure conjectures
and theorem statements into the language, and considering how to mechanically
capture the reasoning about termination of an eval() procedure when it is
applied to a known-terminating program in a language that does not intrinsically
impose total types.

12

High-Level Objectives

Creating a new operating system using a new programming language involves
an absurd amount of work. It seems only reasonable to ask: what are we trying
to achieve? Before answering this question, it is useful to describe the current
context of high-assurance systems.

Our group was initially drawn to verification as a means of increased security
assurance. We are dissatisfied with the level of confidence achievable under cur-
rently standardized assurance schemes, and would like to establish a stronger
foundation for robust and secure systems.

Role of the Common Criteria

The most widely accepted statement of security assurance criteria today is the
Common Criteria [6]. The highest assurance evaluation (therefore highest confi-
dence) level in the Common Criteria scheme is known as EAL7. Its requirements
may be summarized as:

– Rigorously state your threat model and functional requirements.
– Formally state your security policy and a model of the system. Rigorously

state how the security policy addresses your threat model, and how the
system model addresses your functional requirements.

– Verify formally that the policy is enforced in the model of the system
– Show rigorously (as opposed to formally) that the implementation corre-

sponds to the model.

The approach is basically sound. The last step can (and should) be strengthened
to require formally verified correspondence. The decision to settle for rigorous
correspondence demonstration was a pragmatic compromise reflecting the per-
ceived state of the art in program verification circa 1980.

Our group has spent a fair bit of time laying the groundwork for this type of
evaluation for EROS. As our understanding of the process has increased, and we
have reached several conclusions:

1. The Common Criteria process is exceedingly difficult, not because it is con-
ceptually hard to do but because it imposes an overwhelming burden of pa-
perwork. The majority of this paperwork can be eliminated if formal methods
are used where merely rigorous methods are currently required.

2. The process as currently defined has limited real-world value. At the end
of the day, the customer isn’t running the formal system model. They are
running the code. Long experience shows that human inspection of code —
and we believe this applies to rigorous inspection as well — is simply an
inadequate source of practical security.
One solution to this is to extend the use of formal methods all the way to
the code.

13

3. There are serious problems in the Common Criteria scheme and also in the
evaluation process:
– A few evaluation requirements of the scheme induce functional require-

ments that reduce the security of the final system.
– No evaluation guidelines for evaluation above the EAL4 assurance level

(soon: EAL5) exist.6 In consequence, no public confidence is possible
because it isn’t understood what higher levels of assurance evaluation
mean.

4. In the absence of widely and publicly deployed systems that have undergone
a well-defined high-assurance evaluation process and been demonstrated by
practical experience to be defensible, there exists no empirical evidence that
the Common Criteria process works at all. In light of this, the cost of high
assurance evaluation is not objectively justified.
There is clear evidence from other domains, notably FAA Level-A flight
control systems, that the use of full formal methods is an effective means of
achieving robustness. It is likely, but not known, that this success extends
to situations where proactive attempts at compromise enter the picture,
provided that the threat model and requirements have been adequately cap-
tured. Unfortunately, no technique is known that ensures exhaustive threat
or requirement modeling.

5. The Common Criteria process embodies a fundamental and irreconcilable
conflict of interest: the party who creates the software has fiduciary influence
over the party who evaluates the software, and the absence of transparency
in the process lends itself to misuse and even abuse.
Evaluation customers (the software providers) form a “buyers cartel.” The
absence of a large supply of business for evaluators creates an economic en-
vironment in which the diligence of the evaluation itself becomes negotiable.
Evaluators are understandably reluctant to confirm this publicly, but it is
widely acknowledged privately as a pervasive problem. The quality standards
of the U.S. certified evaluation providers have been steadily deteriorating
since the Common Criteria process was first deployed.

6. Taking these issues together, the Common Criteria serves primarily as a
means of protecting incumbent vendors to governments rather than a tool
for improving objectively measurable security.

As a result of these issues, Shapiro recommended in response to inquiries from
members of the United States Senate during the Clinton administration that
the U.S. government “evaluated product” purchasing requirement be dropped
for all but the most sensitive applications, and that the latter insist on and
fund the mechanisms to produce EAL6 or better evaluation processes. The first
recommendation appears to have been accepted. The second was not.
6 As calibration, EAL4 is the current evaluation assurance level of Microsoft’s Win-

dows XP (and many other products). No EAL4 system can be reliably deployed in
hostile environments (such as open networks).

14

An Alternative

Taken as a methodology, there is much in the Common Criteria that is worth
borrowing. We propose to overcome some of its weaknesses by extending the
concept of open source systems to open proof. By “open proof,” we mean systems
in which:

– Source code for the software artifact is publicly accessible.
– A public statement of the requirements met by the system exists in both

definitive formal specification and non-normative informal language.
– A full formal verification that the implementation meets these requirements

has been performed using a publicly available proof engine.
– The resulting proof trail, sufficient to allow a third party to independently

re-execute the verification, is published in machine-readable form.

The last point bears emphasis. In an environment where software must be
adapted and customized by the customer, proof checking is insufficient. The
customer must be able to re-execute the entire proof process on locally modified
versions of the system.

Realistically, we do not expect that software customers will re-execute these
proofs, nor that they would understand directly what the proofs mean. We do
expect that customers facing potential liability in critical deployments may hire
domain experts to check the results as part of software acceptance qualification.

Ultimately, our objective is to redefine the standards of acceptable practice in
critical software by demonstrating publicly that formal methods are not “too
hard” or somehow impractical. If we succeed, the “trust me” approach to soft-
ware security will become economically non-viable.

Verification Goals for Coyotos

The properties that we would like to verify for Coyotos can be divided into low-
level (tactical) properties about the implementation and overall system model
correspondence properties.

Implementation Properties

Design Rules The Coyotos kernel inherits a (relatively short) list of design
rules that help to reinforce both the atomicity and correctness objectives of
the kernel. Among these, the most important is the “two phase” rule. We
would like to formalize and rigorously check this rule and several others that
devolve from it. A few of these have recently been validated using control
flow model checking [3].

15

Access Check Enforcement We would like to formalize the access rules for
each type of system object, and verify that the actual implementation honors
the capability-defined access rights at all appropriate points.

Semantic Observability A difficult check we would like to validate is to for-
malize what is meant by “semantic observability” and verify that the prepare
phase does not make semantically observable modifications to the system
state.

The Constructor Assumptions The constructor verification relies on the as-
sumption that certain kernel-implemented capabilities were trivially safe and
that weak capabilities are transitively read only. Both of these assumptions
should be verified.

Address Translation Because address translation data structures might vio-
late both the type safe heap of the kernel and the overall security of the
machine, we wish to verify that the algorithm by which the hardware mem-
ory map is constructed implements a correctness-preserving translation from
the software-defined mapping structures.

Serializability In the SMP version of the kernel, we would like to verify at
the end of each kernel invocation that there exists some sequential, non-
overlapping sequence of kernel calls that can account for the system state.

Memory Safety We would like a kernel that is known to be “mostly mem-
ory safe.” Certain hardware data structures, most notably the process and
memory management structures, necessarily require low-level manipulation.

Space Bank Isolation Contract The Coyotos storage allocator must ensure
that no resource is simultaneously allocated to more than one requestor.
This so-called “exclusively held” property is foundational for confinement
and higher level mandatory policy. It should be possible to formalize and
verify this property.

System Model Correspondence Properties

Our earlier work on confinement verification yielded a formal system model in
which the system state and the key system operations were formalized in an
operational semantics for an abstracted machine. As a practical matter, this
formalization was too high level to be useful for correspondence checking of the
real kernel implementation.

We would like to create a more detailed abstract system model, and show that
there are fairly direct correlations between this abstract system model and our
actual implementation. What this means in practical terms is something we are
reluctant to speculate on until we understand this part of the process better.

Conclusion

Last year, Shapiro authored a controversial column for IEEE Software entitled
Understanding the Windows EAL4 Evaluation. While the column was widely

16

(and correctly) taken as an indictment of the Microsoft evaluation, astute readers
recognized in it a much deeper indictment of the Common Criteria process and
the current state of computer security in the wild. The current state of affairs
in both security and reliability is unsustainable.

Progressive adoption of software verification techniques in critical systems of-
fers the possibility of a major improvement in the robustness and security of
day-to-day systems. Our hope with the Coyotos project is to demonstrate that
these methods are much more realistic today than is widely understood. We in-
tend to craft a set of tools for creating more robust, high-efficiency system code
and provide a publicly accessible, well-documented exemplar for how the tool is
applied. Along the way, we intend to create an operating system platform that
might be suitable for use in critical applications including critical infrastructure,
life-critical systems, and operationally critical business applications.

References

1. Bartlett, J. F: Scheme!C: A Portable Scheme-to-C Compiler. Technical Report WRL
Research Report 89/1, Digital Western Research Laboratory, Jan 1989.

2. Bevier, W. R.: Kit: A Study in Operating System Verification. IEEE Transactions
on Software Engineering. 15(11). 1989. pp. 1382–1396.

3. Chen, H., Shapiro, J. S.: Using Build-Integrated Static Checking to Preserve Cor-
rectness Invariants. Proc. 2004 ACM Symposium on Computer and Communications
Security. Oct. 2004.

4. Hardy, N.: The KeyKOS Architecture. Operating Systems Review 4(19), Oct. 1985,
pp. 8–25.

5. Guttman, J. D., Ramsdell, J. D., Swarup, V.: The VLISP Verified Scheme System.
Lisp and Symbolic Computation, 8(1-2), 1995, pp. 33–110.

6. —: Common Criteria for Information Technology Security, International Standards
Organization. International Standard ISO/IS 15408, Final Committee Draft, version
2.0, 1998

7. Kaufmann, M., Moore, J. S.: Computer Aided Reasoning: An Approach, Kluwer
Academic Publishers, 2000.

8. Lampson, B. W.: A Note on the Confinement Problem. Comm. ACM. 16(10), 1973,
pp. 613–615.

9. Neumann, P. G., Boyer, R. S., Feiertag, R. J., Levitt, K. N., Robinson, L.: A Prov-
ably Secure Operating System: The System, Its Applications, and Proofs. Computer
Science Laboratory Technical Report CSL-116, 2nd ed., May 1980, SRI Interna-
tional.

10. Rajunas, S. A.: The KeyKOS/KeySAFE System Design Tehnical Report SEC009-
01, Key Logic, Inc., March 1989.

11. —: L4 eXperimental Kernel Reference Manual. System Architecture Group, Dept.
of Computer Science, UniversitÃ¤t Karlsruhe. 2004

12. Sinha, A., Sarat, S, Shapiro, J. S.: Network Subsystems Reloaded. Proc. 2004
USENIX Annual Technical Conference. Dec. 2004

13. Shapiro, J. S., Smith, J. M., Farber, D. J.: EROS, A Fast Capability System. Proc.
17th ACM Symposium on Operating Systems Principles. Dec 1999, pp. 170–185.
Kiawah Island Resort, SC, USA.

17

14. Shapiro, J. S., Weber, S.: Verifying the EROS Confinement Mechanism. Proc. 2000
IEEE Symposium on Security and Privacy. May 2000. pp. 166–176. Oakland, CA,
USA

15. Shapiro, J., Vanderburgh, J. Northup, E, Chizmadia, D: Design of the EROS
Trusted Window System. Proc. 13th USENIX Security Symposium. 2004

16. Tarditi, D., Lee, P., Acharya, A.: No Assembly Required: Compiling Standard ML
to C. Letters on Programming Languages and Systems. June 1992.

18

Future Directions in the Evolution of the L4
Microkernel

Kevin Elphinstone

National ICT Australia Ltd.
Sydney, Australia

kevin.elphinstone@nicta.com.au

Abstract. L4 is a small microkernel that is used as a basis for several
operating systems. L4 seems an ideal basis for embedded systems that
possess and use memory protection. It could provide a reliable, robust,
and secure embedded platform. This paper examines L4’s suitability as a
basis for trustworthy embedded systems. It motivates the use of a micro-
kernel, introduces L4 in particular as an example microkernel, overviews
selected embedded applications benefiting from memory protection (fo-
cusing mostly on security related applications), and then examines L4’s
applicability to those application domains and identifies issues with L4’s
abstractions and mechanisms.

1 Introduction

Microkernels have long been espoused as a basis for robust extensible operat-
ing systems. A small, efficient, flexible kernel that provides high assurance as
to its correctness provides the foundation of the system. System services are
provided by applications running on the microkernel, normal applications re-
ceive those services via interacting with the system applications via interprocess
communication. Such a system is modular, robust as faults are isolated within
applications, flexible and extensible via removing, replacing, or adding system
service applications. The efficiency of such a system structure has been demon-
strated to be sufficiently close to their monolithic counterparts [9], largely as
result of improved efficiency of the microkernel’s fundamental primitives [19,26].

There are strong arguments for applying the microkernel approach to sys-
tems constructed in the embedded space. Embedded systems are becoming more
powerful and feature the memory protection required to facilitate constructing
protected systems, as exemplified by personal digital assistants, digital cameras,
set-top boxes, home networking gateways and mobile phones. These platforms
are no longer sufficiently resource constrained to warrant a built-from scratch,
unprotected construction approach that forgoes the robustness and re-usability
of basing development on an operating system.

An operating system for such embedded devices must be modular to ensure
its applicability to a wide range of devices. It must the reliable as even in the
absence of safety critical or mission critical requirements, embedded systems are

expected to perform their function reliably, and usually do not have a skilled
operator present to correct their malfunctions. It must be robust in the presence
of external and local influences, including those of a malicious nature, given
a device’s potential presence on the Internet or the ability to download and
execute arbitrary code. It should provide strong integrity, confidentiality, and
availability guarantees to applications on the embedded device both to protect
data supplied by the user, and data and applications of the manufacturer, or
content and service providers.

These requirements are strong motivation for a microkernel-like approach,
as opposed to a monolithic approach to constructing an embedded operating
system. A single monolithic operating system that contains all OS functionality
is more difficult to assure as it is both larger and requires all OS functionality to
be assured at the minimum level required for the most critical component. Fault-
isolation is non-existent. Inevitable OS extensions make the situation worse,
even to the point of allowing a well designed base system to be compromised or
malfunction.

The L4 microkernel might provide a capable basis for an embedded operating
system. It is both efficient, flexible, and small. It is currently undergoing formal
verification [29] which would provide a high degree of assurance of correctness.
One of its goals is to provide a basis for OS development for as many classes of
systems as possible: “all things to all people”. It has been successfully used in
systems ranging from the desktop [9], to those with temporal requirements [8],
virtual machine monitors [17], to high-performance network appliances [20]. Such
broad success is strong motivation for exploring L4’s application to the embedded
space.

In the paper, we examine L4’s applicability to the embedded space, and hence
a potential direction in its future evolution. We first provide some background
to L4 in Section 2. When the go on to examine selected application domains
for embedded systems that would stand to benefit significantly from a protected
operating system in Section 3, and summarized important properties required of
an operating system in those domains. In Section 4, we critically examine L4’s
applicability to constructing systems with the identified properties by examining
relevant conceptual model in both past and current versions of L4.

2 L4 Background

L4 is a small microkernel that aims to provide a minimal set of mechanisms suit-
able for supporting a large class of application domains. The basic abstractions
provided are address spaces and threads. A classical process is the combination
of the two. Interprocess communication (IPC) is the basic mechanism provided
for processes to interact. The IPC mechanism is synchronous, threads themselves
are the sources and destinations of IPC, not the process (address spaces) that
encapsulates them. The IPC mechanism has a basic form and an extended form.
The basic form simply transfers up to 64 words between source and destination
in a combination of processor registers and memory dedicated to the purpose,

20

with the exact combination being architecture specific. The extended form of
IPC consists of typed messages sent via the basic mechanism which are inter-
preted by the kernel as requests to transfer memory buffers or establish virtual
memory regions.

Address space manipulation is via the map, grant, and unmap model as
illustrated in Figure 1. The figure consists rectangular boxes representing address
spaces. σ0 initially possesses all non-kernel physical memory; A is an operating
system server; C and D are two clients of A. L4 implements a recursive virtual
address space model which permits virtual memory management to be performed
entirely at user level. It is recursive in the sense that each address space is defined
in term of other address space with initially all physical memory being mapped
within the root address space σ0, whose role is to make that physical memory
available to new address spaces (in this case, the operating system server A
and another concurrently support OS B). A’s address space is constructed by
mapping regions of accessible virtual memory from σ0’s address space to the
next such that rights are either preserved or reduced.

Memory regions can either be mapped or granted. Mapping and granting is
performed by sending typed objects in IPC messages. A map or grant makes the
page specified in the sender’s address space available in the receiver’s address
space. In the case of map, the sender retains control of the newly derived mapping
and can later use another primitive (unmap) to revoke the mapping, including
any further mappings derived from the new mapping. In the case of grant, the
region is transferred to the receiver and disappears from the granter’s address
space (see Figure 1).

Page faults are handled by the kernel transforming them into messages de-
livered via IPC. Every thread has a pager thread associated with it. The pager
is responsible for managing a thread’s address space. Whenever a thread takes
a page fault, the kernel catches the fault, blocks the thread and synthesizes a
page-fault IPC message to the pager on the thread’s behalf. The pager can then
respond with a mapping and thus unblock the thread.

This model has been successfully used to construct several very different sys-
tems as user-level applications, including real-time systems and single-address-
space systems [21,5, 10,9].

Device drivers are outside of the kernel. The kernel enable drivers to run
as normal applications by allowing the registers (or ports) required for device
access to be mapped into the address space (or port space) of applications.
Device interrupts are transformed into messages from apparent kernel threads,
they are acknowledged by sending a reply IPC to the identity of the sending
kernel thread.

We can see that the basic concepts and mechanisms L4 provides are few, while
at the same time, are quite powerful enablers of higher-level systems constructed
on the kernel. The few concepts and mechanisms (including the lack of device
drivers in the kernel) means L4 is relatively small kernel (10,000 lines of code)
that could be a highly assured basis of an embedded system.

21

C

D E

σ0

BA

map

Disk

grant

map

Fig. 1. Virtual Memory Primitives

3 Future Embedded Applications

In this section we examine three application domains of embedded systems:
dependable systems, secure systems, and digital rights management. These ap-
plication domains stand to benefit significantly when the embedded operating
system can provide protection between components in the system.

3.1 Dependable Systems

Dependable systems are systems where there is justifiable grounds for having
faith in the service the system provides [15]. Dependability is a desirable property
of many past, existing and future embedded systems. Methods for obtaining
dependable systems can be broadly classified [16] into (or combinations of) the
following:

fault prevention where fault occurrence or introduction is avoided,
fault tolerance where expected service is maintained in the presence of faults,
fault removal where the number or impact of faults is reduced,
fault forecasting where the number of present and future faults, and their

consequences, is estimated.

As dependable embedded systems are scaled up in terms of overall com-
plexity, the above methods become increasingly difficult to apply. It is essential
that it be possible to construct and validate subsystems independently to make
the problem more tractable, while at the same time ensure that the validated
properties of subsystems remain when they are composed as a whole. This ap-
proach is especially applicable to independent subsystems and leads to the idea
of partitioning or a partitioning kernel [23].

A partition is an execution environment in which an application is isolated
from all other activities on the system. One can consider a partition a virtual
machine that provides exactly the same level of service to its application indepen-
dent of other activities on the system. Partitions provide impenetrable barriers

22

between subsystems in order to guarantee fault containment within a partition.
If faults can propagate between independent subsystems, the problem of assur-
ing dependability becomes significantly more difficult. One study reported that
the length of fault chains (the sequence of faults leading to a failure) was two or
more 80% of the time, and three or more 20% of the time [6]. When fault chains
can cross subsystem boundaries it creates extremely complex failure modes that
should be avoided if possible.

Partitioning can be divided into spatial and temporal partitioning. Rushby
[23] defines them as follows.

Spatial partitioning must ensure that software in one partition cannot change
the software or private data of another partition (either in memory or in
transit) nor command the private devices or actuators of other partitions.

Temporal Partitioning must ensure that the service received from shared re-
sources by the software in one partition cannot be affected by the software in
another partition. This includes the performance of the resource concerned,
as well as the rate, latency, jitter, and duration of scheduled access to it.

One method for achieving spatial partitioning is to use hardware-based mem-
ory protection available on a processor complete with memory management unit
(MMU). The MMU can be used to control access to physical memory to ensure
partitions boundaries are enforced. Note that this assumes that the hardware
itself is dependable which in some applications (or hardware arrangements) may
not be warranted. A partitioning kernel needs to ensure its own memory is inac-
cessible, and also enforce a partitioning access control policy between partitioned
subsystems. This is analogous to secure systems enforcing a mandatory access
control policy which is a mature, well understood field of research.

Temporal partitioning is a much more challenging property to enforce. While
resource sharing can be minimized by design, some resource sharing is unavoid-
able, such as processor time, cache memory, the translation look-aside buffer
(TLB), etc. Temporal partitioning is related both to scheduling and security.
The scheduling discipline has a direct role in processor time sharing, and indi-
rectly to cache and TLB sharing, and potentially on other shared resources (disk,
network bandwidth, etc.). From the field of security, the existence of covert tim-
ing channels implies the existence of temporal partition violations. Hence, var-
ious techniques for identifying covert timing channels (such as shared resource
matrix methodology [14]) are applicable for detecting potential violations of tem-
poral partitioning. However, unlike covert timing channels whose utility can be
reduced or practically removed via adding noise to the channel [11], temporal
partitioning is violated by any external partition-induced variance in temporal
observation of a service. It is clear for the security literature that non-trivial
covert-timing-channel-free systems have proved elusive, which implies complete
temporal partitioning, while extremely desirable, will prove at least equally elu-
sive.

L4 has been examined previously in the context of dependable systems [3].
It was observed that it has shortcomings in the areas of real-time predictability
and in communication control. Solutions that address these issues are proposed

23

that improve the situation, but do not completely solve the partitioning problem
in the context of L4. The most notable omission from the work is any propos-
als for kernel resource management. Rather than introduce and analyze L4’s
partitioning issues here, we postpone the discussion to Section 4.

3.2 Secure Systems

A secure system is a system that can ensure some specific security policy is ad-
hered to, usually expressed in terms of confidentiality, integrity, and availability.
Security in embedded systems differs from tradition secure systems in several
ways as described by Ravi et. al. [22]. Secure embedded systems are constrained
in the processing power available, and hence there is a trade-off between the
strength of cryptographic algorithms employed by a device and the bandwidth
of communications. Battery life is limited and thus security-related processing
also limits a devices availability. Embedded systems are potentially deployed in
hostile environments, which requires tamper resistance to defend against po-
tentially sophisticated and invasive attacks. An embedded operating system is
deployed in a wide variety of application domains, resulting in the need to sup-
port a wide variety of hardware and software configurations, which in turn make
assurance of security properties more difficult.

Security in embedded systems has received renewed interest with the prolifer-
ation of personal computing devices such as PDAs, mobile phones, and the like.
Embedded systems vendors have to balance the “apparent” power, features and
flexibility the software platform provides to device users against the likelihood
of devices being compromised by the users themselves or third-parties. The re-
cent Symbian “cabir” worm demonstrates that embedded environments are not
immune to the current mayhem that exists in the desktop personal computer
market [1]. A substantial change is required from the large, monolithic, feature-
rich, OS and application development cycle. An approach that considers security
systematically and holistically is required to avoid history repeating itself.

One approach to address some of the issues described above is the small
kernel, small components and small interfaces approach. This is another way of
stating the principle of least privilege and the principle of economy of mecha-
nism [24]. The operating system kernel typically has full privilege on the system
it supervises. Applying the above principles strongly argues for a small ker-
nel, with a small, well-understood interface, with careful management of the
resources it arbitrates over. Such a kernel is also more conducive to high levels
of assurance compared to larger, more complex kernels. A small kernel with ap-
propriate mechanisms enabling security-policy enforcement can provide a system
basis that warrants a high degree of confidence in operation.

A small kernel does not necessarily provide a secure system. The same princi-
ples that motivated the adoption of a small kernel must be applied holistically to
the entire system. Such a system would consist of small components implement-
ing well-understood functionality with the minimum privilege required to do
so. The components would provide their services through well understood small

24

interfaces. Small components may also provide the flexibility required of embed-
ded system to be deployed in widely varying application domains via component
composition, substitution, and subtraction.

3.3 Digital Rights Management

The Internet is enabling new methods of content distribution for the entertain-
ment industry beyond traditional methods such as physical media (DVD, CD),
or broadcast or cable TV. However, the Internet is also dramatically reducing
the barrier to wide-scale copyright infringement. For content providers to em-
brace the Internet as a distribution medium, they require confidence that the
users of their content adhere to the conditions of use of the content. Conditions
of use can be represented by a set of rights the end user receives with respect
to the content delivered to him. Ideally, content providers would like guarantees
that the set of rights granted for content are enforced, and restricted to only
those authorized. The concept of specifying, enforcing, and limiting rights asso-
ciated with digital content is encompassed by the term digital rights management
(DRM). Note that we have used the entertainment industry as the motivator
for DRM, however businesses requiring access-right enforcement for their own
internal documents also stand to benefit from digital rights management.

To elaborate on the future role L4 might play in the DRM space, an intro-
duction to a typical generic DRM architecture is warranted. Note that many
methods can be used to directly or indirectly perform digital rights manage-
ment (e.g. watermarking), however we will focus on the architecture depicted in
Figure 2.

Fig. 2. General DRM architecture

Figure 2 depicts a content provider complete with content and a policy with
respect to that content which he wishes respected. The user possesses a device
upon which he wishes to view the content. The are many facets to this picture
which require solutions prior to the user viewing the content.

– The content provider must be able to specify the policy he wishes respected.
XrML [2] is one emerging standard for expression of digital rights, however
for the purposes of this paper we assume a policy exists, is expressible, and
interpretable by software on the end-user device.

25

– The user (or user’s device) must be authenticated to the content provider.
Again, we do not focus on the issue of authentication and simply assume it
can be achieved.

– The content (and policy) must be securely transfered to the device. To pre-
vent the content from being stolen by a third party (or even the user itself),
the content is usually encrypted to ensure it remains confidential outside the
player. Again, we assume this can be achieved.

– The player decrypts the content when viewing is required by the user. The
player is expected to honor the content-use policy, not leak the unencrypted
content, nor the key to decrypt the content.

We can see that successful enforcement of the content use policy is contingent
on the player (where the content is in plain text form) respecting the policy.
Content providers have in the past placed their trust in hardware solutions
such as satellite TV set-top boxes where their single purpose nature, trusted
manufacture, and tamper resistance of the device has mostly proved sufficient to
justify the content provider’s faith in their ability to honor the content provider’s
use policy.

One can see that in a general-purpose computing environment, where the user
has complete control of the device, the content-use policy can be violated by the
end user in many ways, ranging from reverse engineering the player, modifying
the player, or running the player on a modified operating system such that is
renders the plain text content to a file, hence the reluctance of content providers
to widely embrace the Internet as a distribution medium.

One approach to tackling this problem (as exemplified by Microsoft’s recently
renamed NGSCB [4]), is to provide the content provider assurance that a trusted
player on a trusted operating system is the only software that has access to the
plain text content. The fundamental idea is to have tamper-resistant hardware
provide direct or indirect attestation of the software stack required to view the
content. The hardware attests that the software running is what it claims to
be (alternatives include hardware only exposing decryption keys to trusted soft-
ware). If the content provider has faith in the identity of the software stack, it
is in a position to determine if is trusts the particular software stack to honor
the provider’s content-use policy.

Figure 3 depicts an exemplary OS architecture for DRM that support both a
legacy OS with its applications and legacy kernel extensions like device drivers,
and a new trusted mode of operation expected to enforce DRM policy. Very
briefly, the system functions by introducing a new trusted processor mode that
is more privileged than kernel mode. Hardware enforces a boundary between the
trusted mode and all other modes (including precluding DMA from untrusted
mode devices and their drivers). As expected, only the trusted mode kernel
can influence what is in trusted mode or not. The secure storage chip provides
attestation for the trusted kernel, which can in turn attest to the trusted nature
of the applications it support, forming a chain of trust back to the tamper
resistant hardware. Therefore, content providers can obtain assurance that the

26

Fig. 3. An example digital-rights-management operating system.

player of their content has a chain of trust rooted in hardware, and hence can
expect their content policy to be honored.

A major issue with this approach is that trust is really a label applied to
software running in trusted mode, it is not a guarantee that it will always be-
have in a trusted manner. One would expect that as more and more software
acquires trusted status, eventually the trusted partition will approach the size
and complexity of the existing legacy system, unless an alternative construction
paradigm is employed. The original motivation for kernel mode was to enable
the execution of untrusted applications in a controlled way, trusted mode is little
different.

A promising approach to building a secure trusted DRM OS is similar to the
approach for building a secure system in general — small kernel, small compo-
nents, and small interfaces, as outlined in Section 3.2. While only those compo-
nents authorized would be permitted to execute in trusted mode, trusted mode
itself should be a secure system in its own right, capable of defending itself
against compromised trusted applications. In addition to security, the trusted-
mode kernel needs to participate in the attestation process. Given an attested
secure kernel, content providers can have a high level of confidence in their
content-use policies being honored.

3.4 Summary

We have examined three important application domains for embedded systems
possessing hardware memory management functionality: dependable systems,
secure systems, and digital rights management capable systems. All three appli-
cation domains require very similar properties from an operating system kernel
for that application domain. A secure kernel capable of enforcing confidentiality,
integrity, and availability policy for the kernel services itself might be a capable
basis for all three application domains. A small secure and assured kernel when
combined with a set of application domain specific operating system components

27

running as applications on the secure kernel is a promising direction to explore in
developing a new embedded operating system for future embedded applications.

4 Impediments to L4’s Adoption in Secure Embedded
Systems

While L4 has been successfully employed as a research vehicle, and as the basis
of systems in a variety of application domains, it has not been targeted specifi-
cally for secure systems with strong confidentially and availability requirements.
Broadly speaking, the current L4 version has serious issues in the areas of com-
munication control and kernel resource management, for which mature solutions
are yet to emerge.

4.1 Communications Control

Interprocess communication forms the basis of all explicit interaction between
processes running on L4. Note that shared memory regions are established via
IPC, hence includes such interaction. To provide a basis for secure communica-
tion requires at least:

– control of the set of potential destinations that a process can send to, which
implies control of the set of senders a process can receive from. Ideally,
knowledge of the existence of other processes is limited to those processes to
or from which communication is explicitly authorized.

– An unforgeable identifier must be delivered with the message to enable au-
thorization to be performed in the recipient.

There have been at least five models investigated resulting in implementa-
tions in at least 3 cases. The models are clans and chiefs [18], redirection [13],
redirectors [28], virtual threads [27], and pclans [3]. We will briefly examine each
in turn and raise issues with them.

Clans & Chiefs The basic system (ignoring clans & chiefs for ease of introduc-
tion) consists of threads with in processes. Each thread within the system has a
unique system-wide identifier which is used to specify the destination thread for
IPC, can be used for authorization of requests in the recipient by receiving the
sender’s identify. Such a system provides integrity via the unforgeable thread
identifiers, however confidentiality policy is unenforceable as any threads can
communicate if they can guess the destination thread identity, a small, easily
scannable name space.

To control communication flow, clans & chiefs introduces the idea of a chief
of a clan. Every process has a chief statically assigned to it on process creation.
The set of processes assigned to a chief is referred to as its clan.

Communication within a clan is unrestricted as before. Communication across
a clan boundary is redirected to the chief for inspection. The chief can act as a

28

Chiefs

Clan Boundaries

Fig. 4. Clans & Chiefs

reference monitor and enforce a communications policy between clans. In order
to monitor transparently, chiefs are permitted to forge the sender identifier re-
ceived by the recipient in a controlled way. A chief can forward a message that
is redirected to it by impersonating the sender if and only if the apparent source
and intended destination lie on different sides of a clan boundary.

In the most general case, each process has its own chief which mediates all
communication sent and received by the process. Chiefs in such a scenario can
enforce confidentiality policies1, integrity is based on the integrity of the chiefs
a message traverses which is determinable by the eventual message recipient
(though normally the monitoring chiefs are within the trusted computing base).

The major issue with clans & chiefs is that of performance. In the general
case, at least three IPCs are required between a source and destination: source
→ source’s chief → destination’s chief → destination. IPC can be avoided by
placing processes with the exact same security classification within the same
clan, however, as soon as the classification differs, the processes must be in
distinct clans and suffer the penalty of extra IPCs via the chief. A smaller issue
with clans & chiefs is that they are assigned statically at process creation, and
hence cannot be changed if the security policy modified (and thus modifying the
security classification of processes).

Having a chief on the IPC path between source and destination also changes
the semantics of IPC, as IPC completion at the sender no longer implies de-
livery with a chief interposed on the path between source and destination [12].
Proposals to address this issue include postponing sender completion until deliv-
ery at the eventual destination which results in an unduely complex IPC model
that seems prone to denial-of-service attacks. An alternative is to assume inter-
mediaries are in place for all IPC, which implies delivery acknowledgment IPC
in cases where the sender requires notification of successful message delivery.
Neither solution is entirely satisfactory.

1 We acknowledge and ignore for now that thread identifiers are allocated within global
name space which could form a covert channel.

29

Redirection The redirection model was proposed and implemented to address
the shortcomings of the clans & chiefs model. The model provided a mecha-
nism that enabled for each potential source-destination pair of threads in the
system, that IPC between the two could be disallowed, allowed, or redirected to
an intermediary which could perform monitoring in a similar fashion to chiefs.
One strong advantage of redirection is that it can enforce basic communications
control without requiring an intermediary to be in place to forward or discard
messages, thus the issues raised previously regarding preserving IPC semantics
with intermediaries can be avoided. Another advantage was that redirection is
dynamically configurable.

The major issue with redirection is that thread identifiers are still allocated
in a global name space which will be prone to covert channels. Another issue is
that if intermediaries are required for monitoring, a method for transparently
forwarding messages is required. The restriction on impersonation required for
forwarding is that an intermediary can impersonate a source to a destination if
the intermediary is on the path of intermediaries between source and destination.
This check is no longer as simple as the trivial clan & chiefs check, as it requires
a search (hopefully short) for membership of a node within a path of a graph.
However, in the worst case the length of the path is only bounded by the number
of threads in the system. The issue of preserving IPC semantics in the presence
of intermediaries, as described with clans and chiefs, also remains.

Redirectors The redirector model has been implemented in L4Ka::Pistachio.
The basic model is that each process (termed address space in Pistachio) has
a redirector which can be nil or an intermediary. If the redirector is nil, IPC
is uncontrolled. If an intermediary is specified, all cross-address-space IPC is
redirected to the intermediary independent of the destination. The intermediary
can perform monitoring, auditing, debugging, etc.

Redirectors is a simplified model of redirection that avoids the bookkeeping
and lookup required to redirect on a source-destination basis. However, doing so
requires the single intermediary to handle all monitoring functionality required
on any path from a source, as opposed to having potentially separate monitors
that enforce security policy, audit, debug, etc. Typically, the intermediary was
a single central OS personality, and requiring a single intermediary was not
problematic. Control of communication without an intermediary in place is not
possible, unlike with redirection.

Redirectors suffer from most of the issues described for clan & chiefs and
redirection. If any communication control is required on a source, an intermedi-
ary must be used for all communication from the source. Hence in the general
case (assuming a single central intermediary), at least two IPCs are required
per message for delivery. Having intermediaries in place changes the semantics
of IPC. The check of permitting impersonation to enable forwarding has similar
problems to the check for impersonation in redirection, it can result in searching
a chain. The name space of thread identifiers is a likely covert channel.

30

Pclans Pclans is a hybrid between clans& chiefs and redirection. Each pclan has
at least one process within it, and each process is a member of exactly one pclan.
Within a pclan, communication is uncontrolled. Communication across a clan
boundary is dealt with by a model similar to redirection, where an IPC can be
blocked or forwarded to an intermediary. The motivation for pclans is based on
the assumption that there will be significantly fewer pclans than processes, and
hence the redirection table will be significantly smaller. Even if this assumption
is true in general, some of the issues associated with redirection remain: covert
channels over thread identifiers, semantics of IPC with intermediaries, and the
requirement of an intermediary even if communication is permitted to processes
external to the clan.

Virtual Threads Virtual threads is a model in which threads are named by
virtual identifiers in a processes’ local thread space, not by global system-wide
thread identifiers. Note that processes are not identified explicitly, all commu-
nication is between threads whether it is intra- or inter-address-space. Each
process’s thread space is managed using mechanisms similar to the mechanisms
provided to manage a process’s virtual memory address space. Access to a thread
is given by mapping or granting a reference to the real thread. The reference to
the real thread is placed in and referred to by a location in thread space, its
virtual thread identifier. The references to real threads in thread space can be
considered IPC capabilities to threads that are indistinguishable in the recipient.
Access to the thread can be removed via unmapping it.

To distinguish between senders, the IPC call delivers the index of the sender’s
virtual identifier in the recipient’s thread space, if it exists, otherwise the IPC
is denied. To speed up the search for the appropriate index and to distinguish
between potential aliases of the sender in the recipient, the sender is expected
to specify the thread index of itself in the recipients thread space.

Given that virtual threads implements a many-to-one mapping between vir-
tual thread identifiers in thread space and actual instances of threads, one can
use it to permit, block, or redirect IPC by controlling the mapping from thread
space to threads. By having a local name space, a potential covert channel via
global allocation of thread identifiers is avoided.

The main issue with the virtual thread model is requirement for the sender
to provide its virtual identifier in the recipient. The coordination of name spaces
required is cumbersome, precludes name space re-arrangement in the recipient,
makes transparent insertion of intermediaries problematic, and creates a shared
name space between all potential senders to a destination (a potential covert
channel). In general, sender provided identifiers violate the principle of encap-
sulation of implementation of the recipient.

Summary It is clear that existing and proposed communications control mecha-
nisms are unsatisfactory for secure communications control. The proposal closest
to being satisfactory is virtual threads, however, requiring sender-provided iden-

31

tifiers required to be valid in the recipient’s thread space violates encapsulation
of implementation of the recipient.

If the virtual thread model was modified such that the virtual identifiers
themselves were distinguishable (not the sender itself), then the distinguished
virtual identifiers could be used for authorization. In such a system, we are not
actually dealing with virtual identifiers, but distinguished capabilities conveying
the right to IPC to a particular thread. Such a capability-based IPC authoriza-
tion model appears to be the most promising direction to explore in providing
L4 with a secure communication model.

4.2 Resource Management

Precisely controlled resource allocation for kernel operations is a requirement
for secure system construction. Poor resource management within the kernel
can lead to denial of service when resources are exhausted, or covert channels
when resource availability is widely visible.

The default resource allocation for L4 is a central allocator that allocates
from a fixed memory pool allocated at boot time. The default kernel makes
no claims to being suitable for an environment with strong confidentiality or
availability requirements. In fact, it is trivial to mount a denial-of-service attack
on the kernel-memory allocator.

Given the well-known limitations of the existing allocator, alternative strate-
gies have been proposed. The initial proposal [19] was motivated with the goal of
preventing denial of service attacks when executing downloaded web content. Its
approach is to introduce a mechanism to provide physical memory (frames) to
the kernel for a specific process in the event of resource exhaustion, which I will
term the lend to kernel model. Examining map as an illustrative example, let’s
assume we have pagers P1 and P2, a client C, and σ0 as illustrated in Figure 5. If
C requires a virtual memory mapping established, but has insufficient resources
to allocate a page table. P2’s map operation will fail and it then can choose to
either deny service to C due to C’s insufficient resources, or P2 can choose to
allocate and account one of its own pages (and corresponding frame) to C to
supply service to C based on some resource management policy P2 applies to C.
P2 calls to P1 with a “lend the chosen page to C” message. Given that the chosen
page in P2 was original supplied by P1, P1 can apply a resource management
policy to P2, and if the page donation to the kernel is permitted, P1 sends a
similar request to σ0 which lends the underlying frame to the kernel. When C is
eventually deleted, the frames lent to the kernel on its behalf are freed and are
available to the resource pools in σ0, P1, and P2 on demand.

The above lend-to-kernel resource management design has several problems.
The first one is that revocation of frames allocated to a process is only possible
upon deletion of that process, even though the frame contents might be discarded
and later reconstructed via redundant data elsewhere. A page table node is
the obvious example of such a frame that could be revoked and re-established
depending on memory demands. As a result, a long running process will consume
its peak kernel memory requirements, not its current requirements.

32

P2

C

P1

σ0

map

map

map

Fig. 5. Example pager hierarchy

Another issue is that it is not clear how one could modify the design to limit
the actual kernel memory consumption of a process such that its available kernel
memory acts a cache of a larger memory space that is paged to disk, i.e. using
part of physical memory as a fixed size cache of a process’s kernel objects.

Great care is also required in a system based on the above as (i) the resources
of a client consumed by a server performing a service on its behalf is only indi-
rectly controlled by the client; (ii) there are no kernel enforced restrictions on
who one can donate kernel memory to, it’s only limited by resource management
policy; and (iii) one does not necessarily have the right to revoke memory given
to a client as it requires delete rights to the client.

An example of where issue (i) manifests itself is when a client receives a
mapping from a server, the address of the mapping indirectly determines the
page table requirements. Issue (ii) manifests itself with simplistic resource man-
agement policies such as “the OS personality can have as much as it needs, all
normal processes are limited to X frames”, upon which a denial-of-service at-
tack can be mounted by donating all available memory to the OS personality.
Issue (iii) occurs when a server supplies memory to a client (a peer) and does
not posses the right to delete the client. This can be avoided by requesting a
resource provider with delete rights to provide the memory, but this requires
careful resource management co-ordination and accounting which may in turn
result in more issues.

33

The lend-to-kernel model might be workable in theory, and the previous
three issues are pragmatic ease-of-use issues, not necessarily flaws, however it
remains to be seen how to build a practical system with precise kernel resource
management based on the loan-to-kernel model.

A more recent proposal is user-level management of kernel memory [7]. In this
proposal, kernel memory is managed on a per-process basis. Each process starts
with zero memory and consequently must obtain all memory in a controlled way
via the mechanisms provided. The mechanism associates a kpager with each
thread. The kpager receives faults generated on behalf of a thread by the kernel.
Faults (like page faults) are used to signal resource exhaustion of the thread’s
process and suspend the thread until the fault is resolved. The kpager can chose
to supply a frame to the kernel based on a user-level resource policy or deny the
request. If the frame is mapped to the kernel, it becomes opaque to the kpager,
but still revocable via unmap.

Unlike the lend-to-kernel model, the kpager can revoke memory from the
kernel. This is achieved via the kernel either zeroing the content if it is redundant,
or exporting it back to user-level in a form that can be validated upon return.
As an illustrative example of the utility of revocation, a kpager can implement a
cache policy for kernel memory by preempting kernel memory (and potentially
storing it to disk) and re-assigning to another process. Each thread is assigned a
kpager, which may be distinct if kernel memory should be managed differently
for different concurrent processes, e.g. real-time versus best effort.

The issues with the user-level management of kernel memory proposal include
the lack of precision of what the kernel uses the memory for, and the potential
for all operations requiring an object to be allocated to block on a kpager fault.
Devising a scheme to accurately reflect in the fault the subsequent use of the
memory provided to the kernel was left as future work. Without accurately being
able to determine the use of the memory, revocation has unknown consequences.
Even without considering revocation, the kernel may use the memory for provid-
ing a kernel object for which the kpager might have delayed the fault handling
(or denied it completely) had it known the eventual purpose of the memory
required.

Having a thread block on faults when resources are unavailable creates a
denial of service issue similar to that created when memory is copied from one
task to another, where a page missing in the source or destination blocks both
the source and destination. An example of the problem is when a server maps a
page to a client who does not have memory for the needed for the page table node
required. A kpager fault is generated blocking the server on a kpager related to
the client. The kpager has a indeterminable trust relationship with the server,
which leads to the server’s reliance on timeouts to prevent the potential denial of
service, but timeouts other than zero or never are problematic [25] and should
be avoided as a concept fundamental to the design.

Summary Precise, controlled kernel-resource management is something that
has eluded L4 to this point in time. Without a coherent, practical, precise mech-

34

anism for kernel memory allocation, L4 will remain unsuitable as a basis for
systems requiring strong availability and confidentiality guarantees.

5 Conclusion

One potential direction for L4’s future evolution is into the domain of trustwor-
thy embedded systems, as exemplified by dependable systems, secure systems,
and some classes of digital-rights-management-capable systems. We have exam-
ined L4 (both the current design, and previous designs) for its suitability for
supporting trustworthy embedded systems. We have identified two general areas
where L4 is lacking: communications control and kernel-resource management.
We have examined all existing schemes proposed or implemented (to the best
knowledge of the author) for communication control and kernel-resource man-
agement for L4 in particular, and no scheme is entirely satisfactory.

Given we have clearly identified what we believe are the major obstacles to
L4’s adoption in the domain of trustworthy embedded systems, and that we are
confident we can resolve these issues, we expect L4 to become an ideal basis for
the development of future trustworthy embedded systems.

References

1. http://www.symbian.com/press-office/2004/pr040618.html.
2. http://www.xrml.org/.
3. M. D. Bennett and N. C. Audsley. Partitioning support for the l4 kernel. techreport

YCS-2003-366, Dept. of Computer Science, University of York, 2003.
4. P. England, J. D. DeTreville, and B. W. Lampson. Digital rights managements

operating system. US Patent 6,330,670, December 2001.
5. A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone, V. Uhlig, J.E. Tidswell,

L. Deller, and L. Reuther. The SawMill multiserver approach. In 9th SIGOPS
European Workshop, Kolding, Denmark, September 2000.

6. Jim Gray. A census of Tandem system availability between 1985 and 1990. IEEE
Transactions on Reliability, 39(4), October 1990.

7. Andreas Haeberlen and Kevin Elphinstone. User-level management of kernel mem-
ory. In Advances in Computer System Architecture (Proc. ACSAC’03), Lecture
Notes in Computer Science, volume 2823. Springer-Verlag, October 2003.

8. H. Härtig, R. Baumgartl, M. Borriss, C. J. Hamann, M. Hohmuth, F. Mehnert,
L. Reuther, S. Schönberg, and J. Wolter. DROPS - OS support for distributed mul-
timedia applications. In Proc. 8th SIGOPS European Workshop, Sintra, Portugal,
1998.

9. Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg, and
Jean Wolter. The performance of µ-kernel-based systems. In Proc. 16th Symp. on
Operating Systems Principles. ACM, 1997.

10. Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and Jochen
Liedtke. The Mungi single-address-space operating system. Software Practice and
Experience, 28(9), July 1998.

11. Wei-Ming Hu. Reducing timing channels with fuzzy time. In IEEE Symposium on
Research in Security and Privacy, May 1991.

35

http://www.symbian.com/press-office/2004/pr040618.html
http://www.xrml.org/

12. T. Jaeger, J.E. Tidswell, A. Gefflaut, Y. Park, J. Liedtke, and K. Elphinstone.
Synchronous IPC over transparent monitors. In 9th SIGOPS European Workshop,
Kolding, Denmark, September 2000.

13. Trent Jaeger, Kevin Elphinstone, Jochen Liedtke, Vsevolod Panteleenko, and
Yoonho Park. Flexible access control using IPC redirection. In 7th Workshop
on Hot Topics in Operating Systems, Rio Rico, Arizona, March 1999.

14. Richard A. Kemmerer. Shared resource matrix methodology: an approach to iden-
tifying storage and timing channels. IEEE Transactions on Computer Systems,
1(3), August 1983.

15. Jean-Claude Laprie. Dependable computing and fault tolerance: Concepts and
terminology. In Proc. 15th Fault Tolerant Computing Symposium, Ann Arbor, MI,
June 1985.

16. Jean-Claude Laprie. Dependability of computer systems: concepts, limits, im-
provements. In Proc. 6th Symposium on Software Reliability Engineering, October
1995.

17. Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz. Unmodified device
driver reuse and improved system dependability via virtual machines. Unpublished
OSDI Submission, 2004.

18. Jochen Liedtke. Clans & chiefs. In 12. GI/ITG-Fachtagung Architektur von
Rechensystemen, Kiel, March 1992. Springer Verlag.

19. Jochen Liedtke, Kevin Elphinstone, Sebastian Schönberg, Hermann Härtig, Ger-
not Heiser, Nayeem Islam, and Trent Jaeger. Achieved IPC performance. In 6th
Workshop on Hot Topics in Operating Systems (HotOS), Chatham, Massachusetts,
May 1997.

20. Jochen Liedtke, Vsevolod Panteleenko, Trent Jaeger, and Nayeem Islam. High-
performance caching with the lava hit-server. In USENIX Annual Technical Con-
ference, New Orleans, June 1998.

21. Frank Mehnert, Michael Hohmuth, and Hermann Härtig. Cost and benefit of
separate address spaces in real-time operating systems. In Proc. 23rd Real-Time
Systems Symposium, December 2002.

22. S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady. Security in embedded
systems: Design challenges. ACM Transactions on Embedded Computing Systems,
3(3), August 2004.

23. John Rushby. Partitioning for safety and security: Requirements, mechanisms, and
assurance. NASA Contractor Report CR-1999-209347, NASA Langley Research
Center, June 1999. Also to be issued by the FAA.

24. J. Saltzer and M. Schroeder. The protection of information in computer systems.
Proceedings of the IEEE, 63(9), September 1975.

25. Jonathan Shapiro. Vulnerabilities in synchronous IPC designs. In Proc. IEEE
Symposium on Security and Privacy, Oakland, CA, 2003.

26. Jonathan S. Shapiro, David J. Farber, and Jonathan M. Smith. The measured
performance of a fast local IPC. In Proc. 5th Int’l Workshop on Object-Orientation
in Operating Systems, Seattle, WA, 1996.

27. Espen Skoglund. Confinement, virtualization and rights delegation using virtual
threads. Personal Communication, 2004.

28. L4Ka Team. L4 eXperimental Kernel Reference Manual. System Architecture
Group, Dept. of Computer Science, Universität Karlsruhe, revision 6 edition, Oc-
tober 2004.

29. Harvey Tuch and Gerwin Klein. Verifying the L4 virtual memory subsystem. In
Gerwin Klein, editor, Proc. NICTA workshop on OS verification 2004, Technical
Report 0401005T-1, Sydney, Australia, October 2004. National ICT Australia.

36

Formal Security Analysis
with Interacting State Machines

David von Oheimb and Volkmar Lotz

Siemens AG, Corporate Technology, D-81730 Munich,
{David.von.Oheimb|Volkmar.Lotz}@siemens.com

Abstract. We introduce the ISM approach, a framework for modeling
and verifying reactive systems in a formal, even machine-checked, way.
The framework has been developed for applications in security analysis.
It is based on the notion of Interacting State Machines (ISMs), kind of
high-level Input/Output Automata. The ISM framework is used to de-
fine system models and present them graphically with the AutoFocus
tool, to let them be checked for consistency and translated to a repre-
sentation within the theorem prover Isabelle/HOL (or alternatively to
define them directly as Isabelle theory sections), and finally to employ
the theorem prover for performing any kind of syntactic and semantic
checks, in particular semi-automatic verification. We demonstrate that
the framework can be fruitfully applied for formal system analysis by
two classical application examples: the LKW model of the Infineon SLE
66 smart card chip and Lowe’s fix of the Needham-Schroeder Public-Key
Protocol.

Keywords: security, formal analysis, Interacting State Machines, Isabelle/HOL,
AutoFocus, smart cards, protocols

1 Introduction

1.1 Motivation

In industrial environments, there is an increased demand for rigorous analysis
of security properties of systems. Due to restrictions imposed by the application
domain, the system environment, and business needs, new security mechanisms
and architectures have to be invented frequently, with time-to-market pressure
and intellectual property considerations obstructing the chance to gain confi-
dence by exposing a proposed solution to the security community (which has
been shown to be appropriate for cryptographic algorithm assessment). Formal
analysis of suitable abstractions of systems has instead turned out to be ex-
tremely helpful in reasoning about a system’s security, since the mathematical
precision of the arguments allows for maximal confidence in the results obtained
and, thus, in the security of the system being modeled.

The importance of formal analysis – on top of open review – in security as-
sessment is, for instance, reflected by the requirements stated for high assurance
levels of criteria like ITSEC [ITS91] and CC [CC99], which include formal se-
curity modeling and formal system development steps, and the achievements of
the security protocol verification community, which discovered flaws in protocols
that failed to be detected by informal approaches.

However, even in a formal setting it is easy to make – minor and some-
times even major – mistakes: undefined expressions, type mismatches, inconsis-
tent specifications, missing evidence in proofs, false conclusions etc. Therefore,
pure pen-and-paper formalizations cannot be considered fully reliable. Machine-
checking of formal objects and structures has to be employed in order to sig-
nificantly reduce the occurrence of such mistakes. Machine support additionally
gives the opportunity to represent and deal with formal objects – both spec-
ifications and proofs – in an easy-to-comprehend way, which is a prerequisite
for introducing formal approaches in an industrial environment characterized by
time and cost restrictions.

1.2 Goals

A framework for machine-assisted formal security analysis that is particularly
suited for industrial use should enjoy a number of properties:

Expressiveness. It should be possible to describe any typical security sensitive
computation, storage, and communication system in an abstract way. This
requires in particular the notions of state transformation, concurrency, and
message passing.

Flexibility. Since IT systems and their security threats evolve quickly, the mod-
els produced within the framework should be easily adaptable and extendable
as necessary to reflect the changes.

Simplicity. Modeling a system, stating its properties and proving them should
require as little expertise and time as possible while maintaining the rigor of
a fully formal approach.

Graphical capabilities. System models should be representable as diagrams
that provide a good overview of the system structure and advance a quick
intuition about its behavior.

Maturity of the semantics. The specification formalism should build upon a
well-understood logic and have a well-defined semantics that supports rea-
soning about, e.g., invariants and refinement.

Availability of tools. The framework should be built from existing widely
available (open-source) software like editors and proof tools and require at
most minor modifications or extensions to them.

Since we did not find an existing framework that fulfills all these requirements
to a satisfactory extent, we decided to build our own.

38

1.3 Related Work

The IOA Language and Toolset [GL98,Kay01] is a framework for analyzing com-
putational processes with aims very similar to ours. It consists of a specification
language and tool support for simulation, theorem proving, model checking, and
code generation, where by now the simulation aspect is developed most and the-
orem proving support is limited to PVS. Its semantic foundation is the notion of
I/O Automata (IOAs) [LT89] modeling asynchronous distributed computation
with synchronous communication. Since the notion is based on transition sys-
tems augmented by communication primitives (rather than e.g. a process algebra
augmented by local computation primitives), it is fairly easy to understand. It
is equipped with a well-developed meta theory supporting refinement and com-
positional reasoning. System properties, both safety and liveness ones, may be
described using temporal logics and proved by model checking and interactive
theorem proving.

The only — but severe — drawback of IOAs from our perspective, in partic-
ular when modeling system security in an abstract way, is that their interaction
scheme is rather low-level: buffered communication has to be modeled explicitly,
and transitions involving several related input, internal processing, and output
activities cannot be expressed atomically. Instead, each high-level transition has
to be split into multiple low-level transitions, and between these, any number of
further input events may take place due to the input-enabledness of IOAs. The
solution to this problem is to add input buffers that accumulate messages asyn-
chronously. An automaton may retrieve messages from multiple buffers, process
them and send output to multiple buffers, and all this can be done simulta-
neously within a single atomic1 transition. Our notion of ISMs, first described
in [Ohe02], provides for that.

A further related framework that provided inspiration for ours is AutoFocus
[HSSS96] – see §2.2 for more details. Even though developed primarily for mod-
eling and verifying functional properties of embedded systems, it is used also for
the security analysis of general distributed systems [WW01,JW01].

Other related approaches combine state-oriented and message-oriented de-
scription methods, for example translating CSP to B [But99] or Z to CSP [Fis00].
The drawback of such hybrids is that the user has to deal with two different non-
trivial formalisms. Moreover, theorem proving support respecting the structure
of the mixed-style specifications seems not to be available.

2 Preliminaries

In this section, we briefly introduce the two software tools we rely on and com-
ment on their suitability for the ISM approach.

1 Even though these high-level transitions are atomic, the corresponding I/O events
are independent of each other because of the buffered asynchronous output seman-
tics; thus there is no need for action refinement.

39

2.1 Isabelle/HOL

Isabelle [NPW02] is a generic theorem prover that has been instantiated to many
logics, in particular the very practical Higher-Order Logic (HOL). Isabelle/HOL
[PNW+] is a predicate logic based on the simply-typed λ-calculus and thus in a
sense combines logical and functional programming. Being quite expressive and
supporting automatic type inference, it is the most important and best supported
logic of Isabelle. The lack of dependent types introduces a minor nuisance for
applications like ours: for systems consisting of more than one ISM, there has
to be a single type of message contents into which all message data is injected,
and analogously for the local states of the automata composed in parallel.

Proofs are conducted primarily in an interactive fashion where automatic and
semi-automatic methods are available to tackle the routine parts. The Isabelle
system is well-documented and well-supported, is freely available (including
sources) and comes with the excellent user interface Proof General [AGKS99].
We consider it the most flexible and mature verification environment available.
Using Isabelle/HOL, security properties can be expressed easily and adequately
and verified with powerful proof methods.

2.2 AutoFocus

AutoFocus [HSSS96] is a freely available specification and simulation tool for dis-
tributed systems. Components and their behavior are specified by a combination
of System Structure Diagrams (SSDs), State Transition Diagrams (STDs) and
auxiliary Data Type Definitions (DTDs). Their execution can be visualized us-
ing Extended Event Traces (EETs). Various back-ends including code generators
and interfaces to model checkers may be acquired by purchase from Validas [S+].

We employ AutoFocus for its strengths concerning graphical design and pre-
sentation, which is important when setting up models in collaboration with
clients (where strong familiarity with formal notations cannot be assumed),
when documenting our work, and publishing its results. For abstract security
modeling, there are currently two problems with AutoFocus. First, expressive-
ness is limited concerning the type system and the handling of underspecification.
Second, due to the original emphasis of AutoFocus on embedded systems, the
underlying semantics is still clock-synchronous. In contrast, for the most of our
applications, an asynchronous (buffered) semantics is more adequate, which is
under consideration also for future versions of AutoFocus. Using an alternative
semantics implies that we cannot make use of the simulation, code generation
and model checking capabilites of current AutoFocus and its back-ends. Yet this
is not a real obstacle for us since we are interested mainly in its graphic capabili-
ties and the offered specification syntax is general enough to cover our deviating
semantics as well.

40

3 The ISM approach

ISMs are the core of our modeling and verification framework. In this section we
explain the ISM concepts and semantics both in an intuitive way and as rigorous
mathematical definitions. Moreover, we comment briefly on the ISM represen-
tation in AutoFocus and define the syntax of ISM sections in Isabelle/HOL
theories. In the subsequent sections we present two classical case studies.

We use ISMs as building blocks for defining system models of a wide range of
IT systems and expressing and verifying their security properties. At the time of
writing, we have applied the ISM formalism in three major projects. They include
the analysis of a complex database access control system for Siemens Medical
Solutions and of the Infineon SLE88 smart card processor memory manage-
ment [OLW04]. More information on the current status of the ISM framework,
including the sources, a manual, and all publications, may be found at the project
home page, http://ddvo.net/ISM/.

The ISM formalism has been extended to include global state [OL03]. This
can be used, for instance, to provide for dynamic activation state and communi-
cation topology [OL03] or ambient-like administrative domains [KO03] or even
their combination [KO03].

3.1 Concept of Interacting State Machines

An Interacting State Machine (ISM) is an automaton whose state transitions
may involve multiple input and output simultaneously on any number of ports.
As the name suggests, the key concepts of ISMs are states (and in particular
the transitions between them) and interaction. By interaction we mean explicit
buffered communication via named ports (which are also called connections),
where on each port, (typically) one receiver listens to possibly many senders.
Figure 1 gives the basic ISM structure.

Any number of ISMs may be composed in parallel by interleaving their tran-
sitions and forming I/O connections among peer ISMs. The local state of the
resulting ISM is essentially the Cartesian product of the local states of its compo-
nents. The top-level composition is called an ISM system. In [OL03] we extend
the ISM concept by the notion of global state, which is not directly visible to
ISMs but can control the whole system structure. The global state is affected by
commands contained in transitions of elementary ISMs.

A configuration of an ISM consists of its input buffer state and local state. The
local state may have arbitrary structure but typically is the Cartesian product of
a control state which is of finite type and a data state which is a record of named
fields representing local variables. Each ISM has a single2 local initial state.

2 If a non-singleton set of initial states is required, this may be simulated by nonde-
terministic spontaneous transitions from a single dummy initial state.

41

http://ddvo.net/ISM/

Fig. 1. ISM structure

The input buffers of an ISM are a family of (unbounded) message FIFOs,
indexed by port names. The buffers are not part of elementary ISMs but are
introduced by the parallel composition. Input ports can – but in most appli-
cations should not – be shared among ISMs, which leads to nondeterministic
competition on each input item, without fairness guarantees.

Message exchange is triggered by an output operation of any ISM within the
system. Input from the environment may be modeled with suitable ISMs. Inputs
cannot be blocked, i.e. they may occur at any time, appending the received value
to the corresponding FIFO. Values stored in the input buffers related to an ISM
are received and processed by the ISM when it is ready to do so.

The actions of ISMs are given as user-defined transitions, which may be
nondeterministic and can be specified in any relational style. Thus for each
transition the user has the choice to define it in an operational (i.e., executable)
or axiomatic (i.e., property-oriented) fashion or a mixture of the two. Transition
rules specify that – potentially under some precondition that typically includes
matching of messages in the input buffers – the ISM consumes some input, makes
a local state transition, and produces some output. The output is appended to
the respective input buffers specified by port names. Direct or indirect feedback
is possible. Multicast is not directly supported but may be explicitly modeled
easily.

An ISM system run is any prefix of the sequence of configurations reachable
from the initial configuration. The length of a run is not bounded but finite.
Finiteness allows for a simple trace semantics, but on the other hand implies that
we cannot handle liveness properties. Yet we do not feel this as a real restric-
tion because most relevant properties are essentially safety properties: practical
guarantees about the existence of future events typically involve timeouts.

Transitions of different ISMs that are composed in parallel cannot directly
interfere with each other but are related only by the causality wrt. the messages
interchanged. Execution gets stuck (i.e., deadlocks) when there is no component
that can perform any step. As is typical for reactive systems, there is no built-in
notion of final or accepting states.

42

3.2 ISM Semantics

This subsection gives the logical meaning of ISMs, which is both an extension
and a slight simplification of the definitions given in [Ohe02]. As the modifi-
cations pervade all parts of the ISM definitions, and for self-containedness, it
appears mandatory to rephrase all of them.

First some general remarks on the presentation: all definitions and proofs
have been developed as a hierarchy of Isabelle/HOL theories and machine-
checked using this tool. One important effect of this approach is that many kinds
of mistakes like type mismatches can be ruled out. Using the LATEX documenta-
tion feature of Isabelle would even preclude typographic slips in the presentation
but on the other hand would introduce some technicalities many readers would
not be familiar with. Therefore, we give the semantics in traditional “mathe-
matical” style in order to enhance readability. We sometimes make use of λ-
abstraction borrowed from the λ-calculus, but write (multi-argument) function
application in the conventional form, e.g. f(a, b, c). Occasionally we make use of
partial application (aka. currying), such that, in the example just given, f(a, b)
is an intermediate function that requires a third parameter before yielding the
actual function result.

Message Families LetM be the type of all messages potentially exchanged by
ISMs and P the type of port names. Then the message families, which are used
to denote both input3 buffers and input/output patterns, have type MSGs =
P →M∗ where M∗ is any finite sequence of elements of M. We will make use
of the following operations on message families:

– the term bla denotes the empty message family λp. 〈〉 where 〈〉 denotes the
empty sequence

– the term mdom(m) abbreviates {p| m(p) 6= 〈〉}, i.e. the domain of m
– the infix operation .@. concatenates two message families m and n on a port

by port basis: (m .@. n)(p) = m(p) @ n(p)

States and Transitions A set of ISM transitions has type TRANS(Σ) =
℘((MSGs×Σ)× (MSGs×Σ)) where the parameter Σ stands for the type of
the local state and the two occurrences of MSGs stand for input and output
patterns, respectively. Each element has the form ((i, σ), (o, σ′)) and means
that the ISM can (possibly nondeterministically) perform a step from local state
σ to σ′, consuming input i and producing output o. Simultaneous input and/or
output on multiple channels can be specified because both i and o each denote
whole message families. In contrast to the original definition of ISMs [Ohe02],
within a transition, input is described by patterns of messages consumed in the
given step — not by a transition between the state of the input buffer before
and after the transition. This simplifies the definition of single ISMs and shifts
the concept of input buffering to the places where it is indispensable: at the
definitions of parallel composition and automata runs.
3 Recall that output buffers are not required.

43

Elementary ISMs An ISM is given as a quadruple4 a = (In(a),Out(a), σ0(a),
Trans(a)) of type ISM(Σ) = ℘(P)×℘(P)×Σ×TRANS(Σ) where

– In(a) is the set of input port names
– Out(a) is the set of output port names
– σ0(a) is the initial local state
– Trans(a) is the transition relation

Such an ISM is well-formed iff all the port names actually used in the transitions
for input or output respect the I/O interface of the ISM, i.e. ipns(a) ⊆ In(a)
and opns(a) ⊆ Out(a) where

– ipns(a) =
⋃

t∈Trans(a) mdom((λ((i, σ), (o, σ′)). i)(t))

– opns(a) =
⋃

t∈Trans(a) mdom((λ((i, σ), (o, σ′)). o)(t))

Note that In(a) and Out(a) may overlap, which allows for direct feedback
within parallel composition.

Runs Below we will define composite ISM runs, i.e. the parallel composition and
execution of a family of ISMs, directly in one step. Nevertheless, we first define
the two notions of ISM runs and parallel composition independently. Defining
parallel composition in isolation not only makes it easier to understand but also
enables hierarchical analysis and design.

The open runs of an ISM a, denoted by Runs(a) ∈ ℘(Σ∗), are finite sequences
of states that are inductively defined as

〈σ0(a)〉 ∈ Runs(a)

ss_σ ∈ Runs(a)
((i, σ), (o, σ′)) ∈ Trans(a)
ss_σ_σ′ ∈ Runs(a)

The operator _ appends elements to a sequence.
This form of runs is called open because in each step the environment pro-

vides arbitrary input to the ISM, and any output of the ISM is discarded. If
feedback from output to input is desired, one can achieve this by applying the
parallel composition operator to the singleton family of ISMs consisting just of
a, described next.

Parallel Composition Any number of ISMs can be combined in parallel to
form a single composite ISM, which may be further combined with others, etc.
By identifying input and output buffers of ISMs to be combined, internal com-
munication including feedback loops can be introduced as shown in Figure 2.
4 The definition pattern x = (sel1(x), sel2(x), . . .) should not be understood as a

recursive definition of x but as a shorthand introducing a tuple with typical name x
and with selectors (i.e., projection functions) sel1, sel2, ...

44

The parallel composition ‖i∈IAi of a family of ISMs A = (Ai)i∈I is an ISM of
type ISM(CONF(Πi∈IΣi)) where I is any index set I and for any X, the type
of an ISM configuration CONF(X) is defined as MSGs×X. Here MSGs stands
for the type of internal buffers. The composite ISM is defined as the quadruple
(AllIn(A)\AllOut(A), AllOut(A)\AllIn(A), (bla, S0(A)), PTrans(A)) where

Fig. 2. General communication pattern within parallel composition

– AllIn(A) =
⋃

i∈I In(Ai)
– AllOut(A) =

⋃
i∈I Out(Ai)

– bla gives the initial value of the internal buffers, which are used to handle
I/O among peers as well as direct feedback

– S0(A) = Πi∈I(σ0(Ai)) is the Cartesian product of all initial local states
– PTrans(A) of type TRANS(CONF(Πi∈IΣi)) is the parallel composition of

their transition relations.

The pre- and post-states in the composed transition relation refer not only
to the Cartesian product of all local states but also to a message family b. As
already mentioned above for the initial state, the role of b is to buffer internal
I/O. Apart from this, the composed transition relation is defined simply as the
interleaving of the transitions of the component ISMs:

j ∈ I
((i, σ), (o, σ′)) ∈ Trans(Aj)

((i|AllOut(A)
, (i|AllOut(A) .@. b, S[j :=σ])),

(o|AllIn(A)
, (b .@. o|AllIn(A), S[j :=σ′]))) ∈ PTrans(A)

where
– S[j :=σ] denotes the replacement of the j-th component of the tuple S by σ
– m|P denotes the restriction λp. if p ∈ P then m(p) else 〈〉 of the message

family m to the set of ports P
– i|AllOut(A)

denotes those parts of the input i provided not by the output of
peer ISMS but by outer ISMs

– i|AllOut(A) denotes the internal input from peer ISMs or direct feedback,
which is taken from the current buffer contents b

– o|AllIn(A)
denotes those parts of the output o provided to outer ISMs

– o|AllIn(A) denotes the internal output to peer ISMs or direct feedback, which
is added to the current buffer contents b.

45

A parallel composition is well-formed iff the inputs of the individual compo-
nents do not overlap: ∀i j. i 6= j −→ In(Ai) ∩ In(Aj) = ∅. On the other hand,
outputs may overlap, which allows the outputs of different ISMs to interleave
nondeterministically.

A family A of ISMs is called closed iff AllIn(A) = AllOut(A), i.e. there is no
interaction with any outside ISMs. If a system is modeled with a closed ISM
family and input from the environment is important, this may be modeled with
an ISM that belongs to the family and does nothing but generating all possible
input patterns.

When composing ISMs, it is occasionally necessary to prevent name clashes
or to hide connections, which can be achieved by suitable renaming of ports.

Composite Runs We define ISM runs not only for single (possibly composite)
ISMs but also directly for closed families of ISMs intended to run in parallel.
The above definition of parallel composition may be used in combination with
composite runs to describe inner (possibly nested) levels of parallel composition.

The set of all possible composite runs is denoted by CRuns(A) and has type
℘((CONF(Πi∈IΣi))∗) corresponding to the ISM type ISM(Πi∈IΣi). Its elements
are finite sequences of configurations, inductively defined as

〈(bla, S0(A))〉 ∈ CRuns(A)

j ∈ I
cs_(i .@. b, S[j :=σ]) ∈ CRuns(A)

((i, σ), (o, σ′)) ∈ Trans(Aj)
cs _ (i .@. b, S[j :=σ]) _ (b .@. o, (S[j :=σ′])) ∈ CRuns(A)

Traces of composite runs have the form 〈(bla,S0(A)), (b1,S1), (b2,S2), . . .〉
where each element of the sequence is a pair of the current internal buffer contents
and the Cartesian product of all the currently relevant local states.

One can show that composite runs of any closed family A of well-formed
ISMs are equivalent to the runs of the parallel composition of the same family:
wf isms(A) ∧ closed(A) −→ Runs(‖i∈IAi) =CRuns(A).

3.3 AutoFocus representation

By design, ISMs have almost the same structure as the automata definable with
AutoFocus [HSSS96], and thus we can use AutoFocus as a graphical front-end
to our Isabelle implementation. We will employ AutoFocus diagrams when in-
troducing the application examples below.

In a typical application of our framework, ISMs are first specified5 as standard
non-hierarchical AutoFocus automata, saved in the so-called Quest file format,
and then translated into suitable Isabelle theory files by a tool program [Nan02,
ON02].

5 see the online tutorial http://autofocus.in.tum.de/nelli/englisch/html/

46

http://autofocus.in.tum.de/nelli/englisch/html/

3.4 Isabelle representation

ISMs can be defined in dedicated sections of Isabelle theories. Syntactically,
this abstract representation has essentially a one-to-one correspondence to the
AutoFocus representation. Its semantics is the one defined in §3.2.

An ISM section is introduced by the keyword ism and has the following
general structure6:

ism name ((param name :: param type))∗ =
ports pn type
inputs I pns
outputs O pns

messages msg type
states [state type]
[control cs type [init cs expr0]]
[data ds type [init ds expr0] [name ds name]]

[transitions
(tr name [attrs]: [cs expr -> cs expr’]
[pre (bool expr)+]
[in ([multi] I pn I msgs)+]
[out ([multi] O pn O msgs)+]
[post ((lvar name := expr)+ | ds expr’)]
)+]

The meaning of the individual parts is as follows.

– The ISM definition will be referred to by name. It may have any number of
parameters, each declared by param name and a corresponding param type.
The parameters may be used throughout the definition body.

– The type expression pn type gives the Isabelle/HOL type of the port names,
while I pns and O pns denote the set of input and output port names, re-
spectively.

– The type expression msg type gives the type of the messages, which is typi-
cally an algebraic datatype with a constructor for each kind of message.

– The optional state type should be given if the current ISM forms part of a
parallel composition and the state types of the ISMs involved differ. In this
case, state type should be a free algebraic datatype with a constructor for
each state type of the ISMs involved.
The type expressions cs type and ds type give the types of the control and
data state, respectively, while the optional terms cs expr0 and ds expr0 spec-
ify their initial values — if not given, they default to some arbitrary value.
Either (i.e., not both) the control state or the data state may be absent.
The optional logical variable name ds name, which defaults to s, may be
used to refer to the whole data state within transition rules.

6 [. . .] marks optional parts, (. . .)+ means one or more comma-delimited occurrences

47

Transitions are given via named rules where attrs is an optional list of attributes,
e.g. [intro]. The control states (if any) before and after the transition are
specified by the expressions7 cs expr and cs expr’.

Expressions within a rule may refer to the logical data state variable men-
tioned above. In particular, assuming that s is the name of the data state vari-
able, then the value of any local variable lvar of the ISM may be referred to by
lvar s. The scope of free variables appearing in a rule is the whole rule, i.e. free
variables are implicitly universally quantified (immediately) outside each rule.
All the following parts of a transition rule are optional:

– The pre part contains guard expressions bool expr, i.e. preconditions con-
straining the enabledness of a transition.

– The in part gives input port names (or sets of them if preceded by multi)
I pn, each in conjunction with a list I msgs of message patterns expected
to be present in the corresponding input buffer(s). When an ISM executes
a transition, any free variables in message patterns are bound to the actual
values that have been input. Each port names should appear at most once
within a in part. Any input port not explicitly mentioned is left untouched.

– The out part gives output port names O pn, each in conjunction with an
expression O msgs denoting a list of values designated for output to the
corresponding port. The variant using multi is used to specify multicasts.
Each port name should be used at most once within each out part. Any
output port not mentioned does not obtain new output.

– The post part describes assignments of values expr to the local variables
lvar name of the data state. Variables not mentioned remain invariant. Al-
ternatively, an expression ds expr’ may be given that represents the entire
new data state after the transition. Assignments to the local variables suit an
operational style, whereas an axiomatic style can be achieved using ds expr’
(in conjunction with suitable constraints in the preconditions).

An ism theory section is translated to Isabelle/HOL concepts in a straight-
forward way using an extension to Isabelle, as described in [Nan02]. In particular,
each ISM section is translated to a record definition with the appropriate fields,
the most complex one being the transition relation, which is defined via an in-
ductive (but not actually recursive) definition.

The meta theory of ISMs that we have defined in Isabelle/HOL includes
all concepts mentioned in §3.2, in particular well-formedness, renaming, parallel
composition, runs, and composite runs. Further auxiliary concepts are intro-
duced as well, in particular reachability and induction schemes related to ISM
runs. The characteristic properties of these concepts, as required for system ver-
ification, are derived within Isabelle/HOL. All details of the meta theory may
be found in [ON02].

Example ism sections will be given in §4.4 and §5.2.

7 These need not be constant but may contain also variables, which is useful for
modeling generic transitions. In this case, one such transition has to be represented
by a set of transitions within AutoFocus.

48

4 LKW Model for the Infineon SLE 66

We give a slightly extended and improved version of the LKW formal security
model for the Infineon SLE 66 smart card processor.

4.1 The SLE 66 family

SLE 66 is the short name of a family of smart card chips by Infineon. Each chip
consists of a CPU including an encryption unit, RAM, ROM, and EEPROM,
which stores e.g. firmware and personalization data.

Fig. 3. SLE 66 Block Diagram

The chip has been designed as a general-purpose microprocessor with special
hardware supporting security-sensitive applications like electronic passport or
payment systems. In contrast to the successor family, SLE 88, these processors
do not provide separation of memory via a MMU [OLW04] or any operation
system functionality but provide a secure platform for a customized BIOS and
essentially a single application. Therefore, security has to be dealt with at a very
elementary level where nothing can be assumed about higher-level functionality.

The most important security objective is to preserve the security of informa-
tion stored in the memory components. In more detail:

– The data items stored in any of the memory components shall be protected
against unauthorized disclosure or modification.

– The security relevant functions stored in ROM or EEPROM shall be pro-
tected against unauthorized disclosure or modification.

– Hardware test routines shall be protected against unauthorized execution.

The objectives are achieved by implementing a set of security enforcing func-
tions which mainly perform the following two tasks:

– The system runs through several phases during its lifetime. Entry to the
phases is controlled by test functions, which check different flags and give a
specified level of authorization.

– Additionally, all data stored in the memory components is encrypted by
hardware means, utilizing several keys and key sources with a chip specific
random number among them.

49

4.2 LKW formal security model

The LKW model [LKW00] has been one of the first formal models for security
properties of hardware chips. It has been used very successfully within the se-
curity evaluation process for the whole SLE 66 family on ITSEC level E4 high
and the corresponding Evaluation Assurance Level 5 (semi-formally designed
and tested, which includes a formal security model) [CC99]. A slight extension
has been introduced [OLW02] in order to reflect additional application-oriented
security objectives defined in the Smart Card IC Platform Protection Pro-
file [AHIP01]. More recently, we have added an analysis of nonleakage [Ohe04].

Developing the original LKW model took about two months of work, in-
cluding understanding and discussing the system design and security target,
investigating modeling alternatives, discussing the model with the chip develop-
ers, and supporting the evaluation process. The formal parts made up about ten
percent of the whole evaluation and certification effort which was even based on
existing development documents. Re-stating the model with the ISM approach
took about two weeks. Incorporating the extension mentioned above took just a
few days including discussions etc. These numbers may serve as an indicator for
estimating formal modeling efforts in future evaluation processes.

Meanwhile we have developed also a security model of the SLE 88 memory
management unit [OWL03] following the ISM approach as well.

The formal security policy model of the SLE 66 consists of two parts: a system
model describing the processor’s behavior on an abstract level by means of a state
transition automaton with input and output, and a set of security objective
specifications given as properties of automata runs. Thus one can prove that the
security objectives are met by the system model. Interpreting the system model
in terms of the real processor then allows one to conclude with some evidence
that the processor indeed meets its security objectives as required by ITSEC E4
assessment criteria.

The style of the LKW security model is ad-hoc, but using classical formal
access control models instead would not be appropriate because they introduce
notational overhead that would not be justified in the context of the SLE 66
evaluation and because they are not flexible enough to handle phase transitions
and the like adequately.

The LKW model has been done originally as a pen-and-paper work, i.e. with-
out tool assistance. Inevitably, even fully reviewed descriptions of the model con-
tained many (mostly minor) syntactical, typographical and semantical slips as
well as type errors, but also omissions like missing assumptions and incomplete
proofs. Therefore it was desirable to formalize the model in a machine-checked
way, applying a well-developed meta theory. At first, using the Isabelle imple-
mentation of IOAs [Mül98] for this purpose seemed promising, yet the weak
structure of IOA transitions appeared inappropriate, which became one of our
motivations to invent ISMs. Using the ISM approach, the LKW model can be
represented adequately and with maximal quality, as demonstrated on the fol-
lowing pages.

50

4.3 AutoFocus Diagrams

On the abstract level of the LKW model, the system architecture of the SLE 66
is rather trivial: there is one component with one input port named In and one
output port named Out, as depicted by Figure 4. The data state of the component
consists of two stores mapping names of functions to the corresponding function
code and data objects to corresponding data values.

Fig. 4. SLE66 System Structure Diagram

Much more involved is the structure of the state transitions. There are four
control states corresponding to the phases of the SLE 66 life cycle:

Phase 0 : construction of the chip
Phase 1 : upload of Smartcard Embedded Software and personalization
Phase 2 : normal usage
Phase Error : locked mode from which there is no escape

Fig. 5. SLE 66 State Transition Diagram

In order to keep the state transition diagram clear, Figure 5 contains all
control states and transitions, but instead of showing the preconditions, inputs,
outputs, and changes to the data state, we just label the transitions with the
names of the corresponding transition rules. These are described in detail in §4.4,
while here we give an informal general description:

51

R0.0 thru R0.4 describe the execution of functions in the initial phase 0. Only
the processor manufacturer is allowed to invoke functions in this phase and
the requested function must be present.

R0.0 states that if the function belongs to class FTest0 and the corresponding
test succeeds, phase 1 will be entered, and the test functions of that class
are disabled.

R0.1 describes a shortcut leaving out phase 1: if the function belongs to class
FTest1 and the test succeeds, phase 2 will be entered, and all test functions
are disabled.

R0.2 states that if a test fails, the system will enter the error state.
R0.3 models the successful execution of any other function, in which case the

function may change the chip state and yield a value.
R0.4 states that in all remaining cases of function execution, the chip responds

with No and its state remains unchanged.
R1.1 thru R1.4 describe the execution of functions in the upload phase 1 anal-

ogously to R0.1 thru R0.4.
R2.1 and R2.2 describe the execution of functions in the usage phase 2 anal-

ogously to R0.3 and R0.4.
R3.1 and R3.2 describe the execution of functions in the error phase analo-

gously to R0.3 and R0.4, except that the only function allowed to be executed
in this phase is chip identification.

R4.1 and R4.2 describe the effects of a specific operation used for uploading
new (operating system and application) functionality on the chip. This must
be done by subjects trusted by the processor manufacturer and is allowed
only in phase 1.

R4.1 describes the admissible situations, and
R4.2 describes all other cases.
R5.1 thru R5.3 describe the effects of attacks. Any attempts to tamper with

the chip and to read security-relevant objects via physical probing on side
channels (by mechanical, electrical, optical, and/or chemical means), for ex-
ample differential power analysis or inspecting the silicon with a microscope,
are modeled as a special “spy” input. Note that modeling physical attacks
in more detail is not feasible because this would require a model of physi-
cal hardware. In particular, the conditions (and related mechanisms) under
which the processor detects a physical attack are beyond the scope of the
model.

R5.1 describes the innocent case of reading non-security-relevant objects in any
regular phase, which actually reveals the requested information.

R5.2 describes the attempt to reading security-relevant objects in any regular
phase. The chip has to detect this and enters the error phase, while the
requested object may be revealed or not. This concept is called “destructive
reading”: one cannot rule out that attacks may reveal information even about
security-relevant objects, but after the first of any such attacks, the processor
hardware will be “destroyed”, i.e. cannot be used regularly.

R5.3 states that in the error phase no (further) information is revealed.

52

4.4 Isabelle Definition

We describe in detail our ISM model of the SLE 66, which is based on the orig-
inal LKW model plus the slight extension introduced in [OLW02]. We do this
employing the automatic LATEX documentation facility of Isabelle that can be
used like a “literate programming” environment: the user augments an Isabelle
theory (in this case representing our SLE 66 model) with comments and other
text sections in LATEX format that may refer (via a special quotation mechanism)
to the type declarations, constant definitions, theorems, etc. When Isabelle pro-
cesses the theory, it generates LATEX output for all parts of the theory that are
marked as relevant for documentation and merges them with the chunks of text
supplied by the user. The great advantage of this approach is that the theory
(and proof) development and its documentation are always with each other and
mistakes typically resulting from typesetting formulas with LATEX manually are
avoided.

The Isabelle theory sources, including the documenting text, may be obtained
from [ON02]. For the original description of the LKW model containing, among
others, a more general discussion on the benefits of formal modeling, refer to
[LKW00].

theory SLE66 = ISM_package: — we build on the general ISM definitions

First we have to define a number of entities (types, logical constants, etc.)
acting as building blocks for the actual ISM theory section. In order to keep the
model as abstract as possible, which makes it less bulky to read and simplifies
the proofs, we often use underspecification. This important modeling technique
means that for part of the types and constants we do not give full definitions
but only declarations of their names. We even do not make the encryption of
data in the memory components explicit.

Names Objects stored on the chip may be either functions or data and are
referred to by object names. The type of these names, on, is the disjoint sum of
function names fn and data object names dn, which are not further specified:

typedecl fn — function name
typedecl dn — data object name

datatype on = F fn | D dn — object name

Objects are classified as security-relevant (demanding secrecy and integrity)
by including their names in the sets F_Sec or D_Sec, whose disjoint union is called
Sec. In order to meet the additional requirements of [AHIP01], the domain of
security relevant functions F_Sec of the original LKW model has been refined
to the disjoint union of F_PSec and F_ASec, which control the protection of the
processor and application functionality, respectively.

In the following theory sections, we declare a list of constants together with
their types. We define only part of them, and for part of the remaining ones we
give the essential properties in the form of axioms:

53

consts
f_SN :: "fn" — the name of the function giving the serial number
FTest0 :: "fn set" — the names of test functions of phase 0
FTest1 :: "fn set" — the names of test functions of phase 1
FTest :: "fn set" — the names of all test functions
F_Sec :: "fn set" — the names of all security-relevant functions
F_PSec :: "fn set" — the subset of F_Sec relevant for the processor
F_ASec :: "fn set" — the names of F_Sec relevant for applications
F_NSec :: "fn set" — the names of all non-security-relevant functions
D_Sec :: "dn set" — the names of all security-relevant data objects
D_PSec :: "dn set" — the subset of D_Sec relevant for the processor
D_ASec :: "dn set" — the names of D_Sec relevant for applications
D_NSec :: "dn set" — the names of all non-security-relevant data objects

Sec :: "on set" — the names of all security-relevant objects
defs

FTest_def: "FTest ≡ FTest0 ∪ FTest1"

F_ASec_def: "F_ASec ≡ F_Sec - F_PSec"

D_ASec_def: "D_ASec ≡ D_Sec - D_PSec"

F_NSec_def: "F_NSec ≡ -F_Sec"

D_NSec_def: "D_NSec ≡ -D_Sec"

Sec_def: "Sec ≡ {F fn |fn. fn ∈ F_Sec} ∪ {D dn |dn. dn ∈ D_Sec}"

axioms
FTest01_disjunct: "FTest0 ∩ FTest1 = {}"

f_SN_not_FTest: "f_SN /∈ FTest"

F_PSec_is_Sec: "F_PSec ⊆ F_Sec"

FTest_is_PSec: "FTest ⊆ F_PSec"

State The abstract state of an SLE 66 chip is a pair, where the first component
is the phase in the processor life cycle:

datatype ph = P0 | P1 | P2 | Error

We introduce the type val for any values, i.e. function code or data stored
or processed by the chip. The only thing we need to know about the type val is
that the serial number of the chip belongs to it.
typedecl val — data and function values

consts SN :: val — serial number

The second state component is a record of two partial functions, valF and
valD, mapping function and data object names to values:

record chip_data =

valF :: "fn ⇀ val"

valD :: "dn ⇀ val"

The function val takes an argument of type chip_data and yields a partial
function lifting valF and valD to general object names of type on :
constdefs

val :: "chip_data ⇒ on ⇀ val"

"val s on ≡ case on of F fn ⇒ valF s fn | D dn ⇒ valD s dn"

54

Having defined the two components of the processor state, we can now give
the definition of the overall state:

types SLE66_state = "ph × chip_data"

We will often need to refer to the set of functions available in the current
state, therefore we introduce an auxiliary function fct that yields the domain
of valF :

constdefs
fct :: "chip_data ⇒ fn set"

"fct s ≡ dom (valF s)"

We declare three further auxiliary functions that denote the results and state
changes of a processor function (including test functions):

consts
"output" :: "fn ⇒ chip_data ⇒ val"

"change" :: "fn ⇒ chip_data ⇒ chip_data"

— change is unused for test functions
"positive" :: "val ⇒ bool" — check for positive test outcome

Further ISM section ingredients We need only two port names, one for
input to the chip and one for its output:

datatype interface = In | Out

SLE 66 commands provide information on the subjects issuing them. There
is a special subject Pmf denoting the processor manufacturer.

typedecl sb

consts Pmf :: sb

Possible input consists of either the two kinds of SLE 66 commands modeling
function execution and function code loading operations or the Spy operation,
which models attacks that may reveal information stored on the chip and may
corrupt the chip memories. Output of the SLE 66 may be the result value of a
(regular) function or an indication of success or failure.

datatype message =

Exec sb fn | Load sb fn val | Spy on — input

| Val val | Ok | No — output

The subjects performing regular commands identify themselves to the chip
via physical means. The actual authentication mechanism, as well as many other
implementation details, is confidential and beyond the scope of this article any-
way. Here we just declare an auxiliary function that yields the subject issuing a
(regular) command:

consts subject :: "message ⇒ sb"

primrec
"subject (Exec sb fn) = sb"

"subject (Load sb fn v) = sb"

55

ISM definition Having defined its various parameters, we can finally give the
theory section that specifies the SLE 66 model as an ISM:

ism SLE66 =

ports interface

inputs "{In}"

outputs "{Out}"

messages message

states
control ph init "P0"

data chip_data name "s" — The data state variable is called s. Note that
the initial data state is left unspecified and thus is arbitrary, which is a good example
of underspecification since its actual value is immaterial for the security properties we
are interested in.

transitions

— Rule R00 specifies execution of a test function f from the set FTest0 by the processor
manufacturer Pmf in the initial phase P0. If the test is successful then the SLE 66 enters
the next phase P1, answers with Ok, and disables the test functions FTest0. As specified
by the data theory subsection just above, the variable s denotes the current data state
of the ISM at the beginning of the transition. Thus, for example, fct s means the
functions currently available. The operator ‘b’ below restricts a partial function, in this
case valF s, to the given set, in this case the complement of FTest0.
Rule R00 is typical for interactions of the SLE 66 in the sense that a single input triggers
a single output. Note that the direct relation of input and output is expressed easily
using ISMs, whereas using IOAs, two transitions would be required whose relation
would be cumbersome to express and to use during verification.

R00: P0 → P1

pre "f ∈ fct s∩FTest0", "positive (output f s)"

in In "[Exec Pmf f]"

out Out "[Ok]"

post valF := "valF sb(-FTest0)"
— Rule R01 is analogous to R00, but specifies that if the test function f is from FTest1

rather than FTest0 then phase P1 is skipped and the chip enters P2 immediately,
disabling all test functions FTest :

R01: P0 → P2

pre "f ∈ fct s∩FTest1", "positive (output f s)"

in In "[Exec Pmf f]"

out Out "[Ok]"

post valF := "valF sb(-FTest)"
— If in P0 a test function gives a negative result then the chip enters the Error phase
and the output is No :

R02: P0 → Error

pre "f ∈ fct s∩FTest0", "¬positive (output f s)"

in In "[Exec Pmf f]"

out Out "[No]"

— Any other function call issued by the processor manufacturer in P0 has the standard
consequences: The function result is output and the data state changed (according to
the semantics of the function which is not further specfied). Note that by the form of

56

postcondition used, the whole data state (consisting of valF and valD here) is replaced
by the given value: the denotation of change f s.
R03: P0 → P0

pre "f ∈ fct s - FTest"

in In "[Exec Pmf f]"

out Out "[Val (output f s)]"

post "change f s"

— In all remaining cases for phase 0, the attempted function execution is ignored and
the output is No :

R04: P0 → P0

pre "sb 6= Pmf ∨ f /∈ fct s"

in In "[Exec sb f]"

out Out "[No]"

— This ends the specifications of transitions originating in P0.

The specifications of transitions originating in P1 are fully analogous to the rules R00,
R02, R03, and R04, just replacing P0 by P1, P1 by P2, and FTest0 by FTest1 :

R11: P1 → P2

pre "f ∈ fct s∩FTest1", "positive (output f s)"

in In "[Exec Pmf f]"

out Out "[Ok]"

post valF := "valF sb(-FTest1)"
R12: P1 → Error

pre "f ∈ fct s∩FTest1", "¬positive (output f s)"

in In "[Exec Pmf f]"

out Out "[No]"

R13: P1 → P1

pre "f ∈ fct s - FTest1"

in In "[Exec Pmf f]"

out Out "[Val (output f s)]"

post "change f s"

R14: P1 → P1

pre "sb 6= Pmf ∨ f /∈ fct s"

in In "[Exec sb f]"

out Out "[No]"

— The rules R21 and R22 specify function calls in P2 analogously to R03 and R04,
except that any subject is allowed to issue them:

R21: P2 → P2

pre "f ∈ fct s"

in In "[Exec sb f]"

out Out "[Val (output f s)]"

post "change f s"

R22: P2 → P2

pre "f /∈ fct s"

in In "[Exec sb f]"

out Out "[No]"

— In the Error phase, the only function that may be called is chip identification,
yielding the serial number SN. All other cases yield No :

57

R31: Error → Error

pre "f_SN ∈ fct s"

in In "[Exec sb f_SN]"

out Out "[Val SN]"

R32: Error → Error

pre "f /∈ fct s∩{f_SN}"
in In "[Exec sb f]"

out Out "[No]"

— The rules R41 and R42 specify the behavior of the Load operation, which is allowed
only for the processor manufacturer and only in the upload phase P1. If allowed, valF
is updated at the position f with the new function value v.
In contrast to the original LKW model [LKW00], the Load operation may upload
not only non-security-relevant functions but also functions of the application security
domain (as long as no such function of the same name is already present).

R41: P1 → P1

pre "f ∈ F_NSec ∪ (F_ASec - fct s)"

in In "[Load Pmf f v]"

out Out "[Ok]"

post valF := "valF s(f 7→v)"

R42: ph → ph

pre "f /∈ F_NSec ∪ (F_ASec - fct s) ∨ sb 6= Pmf ∨ ph 6= P1"

in In "[Load sb f v]"

out Out "[No]"

— Note that the rule R42 is generic in the sense that it applies to more than one control
state of the ISM, namely all phases except P1.

— The rules R51 thru R53 specify the possible reactions of the chip to attacks, modeled
by the Spy operation. If the attacker attempts to read a non-secret object whose name
is on and the chip is not in the Error phase, the access may be granted, yielding the
desired value (if any):

R51: ph → ph

pre "on /∈ Sec", "ph 6= Error"

in In "[Spy on]"

out Out "case val s on of None ⇒ [] | Some v ⇒ [Val v]"

— Rule R52 specifies the typical reaction of the SLE 66 upon attacks trying to read
a secret object while tampering with the chip: it may be unable to prevent that the
desired value is output, but in any case it reaches the Error phase from which no
further secrets may be obtained, as specified by the rules R31, R32, and R53.

R52: ph → Error

pre "on ∈ Sec", "v ∈ {[],[Val (the (val s on))]}", "ph 6= Error"

in In "[Spy on]"

out Out "v"

post "any"

— Note that R52 describes two sorts of nondeterminism: v denotes either the empty
output or the singleton output giving the desired value, and the attack may corrupt
the function and data stores arbitrarily.

58

There are also cases where the chip can resist an attack without any damage and
without any leakage of secrets, such that there is no need to enter the Error phase:

R52’:ph → ph

pre "on ∈ Sec", "ph 6= Error"

in In "[Spy on]"

out Out "[]"

— If the chip is already in the Error phase, no further secrets can be obtained. The
chip state may be corrupted further, but it makes sure that it stays locked in the Error
phase:

R53: Error → Error

in In "[Spy on]"

out Out "[]"

post "any"

As expressed by the rules R52 and R53, the attacker may obtain (the repre-
sentation of) at most one secret object from the chip memory. It is interesting
to observe that the leakage of one item is harmless because all data stored on
the chip is encrypted. There are two cases to consider:

– The secret obtained is the de-/encryption key itself, which is not helpful to
the attacker because no further data item, in particular none encrypted with
the key, can be obtained.

– The secret obtained is an encrypted value, which is not helpful because the
attacker cannot any more obtain the decryption key.

Obviously, sophisticated techniques are required to implement the specified re-
action to physical attacks modeled by the Spy operation.

ISM runs The SLE 66 ISM just defined models the static interface of the chip
as well as all possible single state transitions that it can perform. In order to
describe the overall behavior of the chip during its life-cycle, we can refer to the
notions that our Isabelle implementation provides for ISMs in general:

types
SLE66_trans = "(unit, interface, message, SLE66_state) trans"

constdefs
Trans :: "SLE66_trans set" — the set of all possible transitions
"Trans ≡ trans SLE66.ism"

TRuns :: "(SLE66_trans list) set" — all possible transition sequences
"TRuns ≡ truns SLE66.ism"

Runs :: "(SLE66_state list) set" — all possible sequences of states

"Runs ≡ runs SLE66.ism"

This concludes the system model of the SLE 66.

59

4.5 Properties

The second part of the SLE 66 security model deals with the security properties
derivable from the system model.

Security Objectives In the (confidential8) original security requirements spec-
ification by Infineon, the security objectives for the SLE 66 had been stated as
follows.

SO1. “The hardware must be protected against unauthorised disclosure of se-
curity enforcing functionality.”

SO2. “The hardware must be protected against unauthorised modification of
security enforcing functions.”

SO3. “The information stored in the processor’s memory components must be
protected against unauthorised access.”

SO4. “The information stored in the processor’s memory components must be
protected against unauthorised modification.”

SO5. “It may not occur that test functions are executed in an unauthorised
way.”

Later, an additional requirement concerning the confidentialiy and integrity of
Smartcard Embedded Software, which is not part of the security enforcing func-
tionality, has been added [AHIP01, §4.1].

Having formally defined the SLE 66 system model, these informal statements
can now be expressed formally as predicates on the system behavior, describing
unambiguously and in detail which states may be reached under which circum-
stances, which data may be modified, and which output may appear on the
output channel.

After formalizing the security objectives, it is natural to ask if the chip be-
havior, as specified in the system model, actually fulfills these requirements.
The corresponding proofs have been conducted first using pen and paper, as
reported in [LKW00]. Within the ISM framework, we meanwhile have verified
these properties even mechanically using Isabelle, discovering two major flaws
that will be reported in this subsection. Below we give all the required auxiliary
definitions, the most important lemmata, and all theorems, together with an
abstract informal description of the machine-checked proofs.

Model Assumptions Due to the abstract specification style where e.g. the
semantics of parts of the chip functionality is not fully specified, it turns out
that in order to prove the properties, a few general axioms that augment the
system model are required. The first one of them asserts that security-relevant
functions do not modify security-relevant functions:

Axiom1: "f∈fct s∩F_Sec =⇒ valF (change f s)bF_Sec = valF sbF_Sec"
8 quotations with permission.

60

In comparison to the version of this axiom in the original model, the scope of
functions f has been extended from “initially available” to “security-relevant”,
reflecting the changes to rule R41. Part of the lemmas as well as the formalized
security objective FSO21 change accordingly.

The second axiom is very similar, stating that also non-security-relevant func-
tions do not modify security-relevant functions:

Axiom2: "f∈fct s∩F_NSec =⇒ valF (change f s)bF_Sec = valF sbF_Sec"

In order to formalize the security objective SO1 and Axiom3, we define the
set ValF_Sec r holding all code of security-relevant functions in a given run (i.e.,
sequence of states) r.

constdefs
ValF_Sec :: "SLE66_state list ⇒ val set"

"ValF_Sec r ≡
S
{ran (valF sbF_Sec) |ph s. (ph,s) ∈ set r}"

The third (and last) axiom introduced in the LKW model states that in
phase 2, a function cannot reveal (by intentional “guessing” or by accident)
any members of ValF_Sec r. This rather self-evident requirement is needed for
technical reasons in the proof of SO1.

Axiom3: " [[r∈Runs; (P2,s)∈set r; f∈fct s]]=⇒ output f s /∈ValF_Sec r"

A notational remark is in order here: in Isabelle formualas, multiple premises
are bracketed using ‘[[’ and ‘]]’ and separated using ‘; ’.

When machine-checking the proofs contained in [LKW00] with Isabelle, we
noticed that a fourth axiom was missing that makes an implicit but important
assumption explicit: if a function object may be referenced in two (different)
ways and one of them declares the function to be security-relevant, the other
has to do the same.

Axiom4: " [[r ∈ Runs;

(ph, s) ∈ set r; (ph’, s’) ∈ set r;

val s n = Some v; val s’ n’ = Some v;

n ∈ Sec]] =⇒ n’ ∈ Sec"

The exposure of missing critical assumptions demonstrates how important
machine support is when conducting formal analysis.

Theorems Finally, we translate the five informal security objectives to Isabelle
formulas and prove them within the system. It is instructive to compare the
formal versions of the security objectives FSOx below with the informal ones,
SOx, given above.

The formalization of SO1, called FSO1, states that in any sequence ts of
transitions performed by the chip, if the chip outputs any value v representing
the code of any security-relevant function during its hitherto life, then the error
state is entered or the output was in response to a function execution request
by the processor manufacturer:

61

theorem FSO1: " [[ts ∈ TRuns; ((p,(ph,s)),c,(p’,(ph’,s’))) ∈ set ts;

p’ Out = [Val v]; v ∈ ValF_Sec (truns2runs ts)]] =⇒
ph’ = Error ∨ (∃ fn. p In = [Exec Pmf fn])"

The proof of FSO1 proceeds by unfolding some definitions, e.g. of the SLE 66
ISM, applying properties of auxiliary concepts like truns2runs, and a case split
on all possible transitions. Isabelle can solve most of the cases automatically
(with straightforward term rewriting and purely predicate-logical reasoning),
except for two: the case of rule R21 is handled using Axiom3, and for R51 we
rely on the property " [[r ∈ Runs; (ph, s) ∈ set r; v ∈ ValF_Sec r; val s n

= Some v]] =⇒ n ∈ Sec" which in turn relies on Axiom4.
A more elaborate formalization of SO1 and SO3 taking into account also

indirect and partial information flow is motivated and sketched in [Ohe04].
Like in the original LKW model, the translation of SO2 splits into two parts.

FSO21’ states that for any (even unreachable) transition not ending in the error
phase, if a security-relevant function g is present in both the pre-state and the
post-state, the code associated with it stays the same:

theorem FSO21’: " [[((p,(ph,s)),c,(p’,(ph’,s’)))∈Trans; ph’ 6= Error;

g ∈ fct s∩fct s’∩F_Sec]] =⇒ valF s’ g = valF s g"
This property is a generalization of the original FSO21, reflecting the exten-

sions made to the Load operation in rule R41: Here we do not compare the initial
and current value of g but the previous and current one, which takes into account
also functions added in the meantime.

The proof of this property is — as usual — by case distinction over all possible
transitions. Most cases are trivial except for those where function execution may
change the stored objects, which are described by the rules R03, R13, and R21.
Here an argumentation about the invariance of security-relevant functions g is
needed, which follows easily from Axiom1 and Axiom2.

Similarly to FSO21’, FSO22 states that for any transition within the same
phase that is not the error phase, the set of existing security-relevant functions
is non-decreasing:

theorem FSO22: " [[((p,(ph,s)),c,(p’,(ph’,s’)))∈Trans; ph’ 6= Error;

ph = ph’]] =⇒ fct s∩F_Sec ⊆ fct s’∩F_Sec"
Not surprisingly, the proof of this property is completely analougous.
FSO3 states that if the attacker obtains a result trying to get hold of a security-

relevant data object on, then the chip enters the error phase:

theorem FSO3:" [[((p,(ph,s)),c,(p’,(ph’,s’)))∈Trans; p In = [Spy on];

on ∈ Sec; p’ Out 6= []]] =⇒ ph’ = Error"

The proof is done simply by case distinction.
FSO4 states that any transition not entering the error phase but changing the

state does this in a well-behaved way: s’ is derived from s via the desired effect
of executing an existing function, or there is a phase change where only the test
functions may be modified, or only a single function f is changed due to a Load

operation:

62

theorem FSO4:

" [[((p,(ph,s)),c,(p’,(ph’,s’))) ∈ Trans; ph’ 6= Error]] =⇒
s’ = s ∨
(∃ sb f . p In = [Exec sb f] ∧ f ∈ fct s ∧ s’ = change f s) ∨
(ph’ 6=ph ∧ valD s’ = valD s ∧ valF s’b(-FTest) = valF sb(-FTest))∨
(∃ sb f v. p In = [Load sb f v] ∧

valD s’ = valD s ∧ valF s’b(-{f}) = valF sb(-{f}))"

The proof is also straightforward by case distinction.
A second omission of the LKW model was that in the proof of the security

objective FSO5 an argumentation about the accessibility of certain functions was
not given in a rigorous way. We fix this by introducing an auxiliary property
(where, as typical with invariants, finding the appropriate one is the main chal-
lenge) and proving it to be an invariant of the ISM. The invariant states that in
phase 1, the test functions from FTest0 have been disabled, and in phase 2, all
test functions have been disabled:

constdefs
no_FTest_invariant :: "SLE66_state ⇒ bool"

"no_FTest_invariant ≡ λ(ph,s).

∀ f ∈ fct s. (ph = P1 −→ f /∈ FTest0) ∧ (ph = P2 −→ f /∈ FTest)"

When proving that the invariant holds, 14 of the 19 cases are trivial, and
the remaining ones require simple properties of the set FTest, and two of them
require additionally Axiom1 and Axiom2. The invariant implies

lemma P2_no_FTest:

" [[(P2,s) ∈ reach SLE66.ism; f ∈ fct s]] =⇒ f /∈ FTest"

Wxploiting this property for the case of rule R21, we can prove FSO5 in the
usual way. This theorem states that in any sequence of transitions performed
by the chip, any attempt to execute a test function not issued by the processor
manufacturer is refused:

theorem FSO5: " [[ts ∈ TRuns; ((p,(ph,s)),c,(p’,(ph’,s’))) ∈ set ts;

p In = [Exec sb f]; f ∈ FTest]] =⇒
sb = Pmf ∨ s’ = s ∧ p’ Out = [No]"

The Isabelle proofs of all six theorems formalizing the security objectives and
the two lemmas required are well supported by Isabelle: each of them takes just
a few steps, about half of which are automatic.

end

This finishes our detailed presentation of the SLE 66 case study. It demon-
strates that the ISM approach can be fruitfully applied to both model and prove
the security properties of state transition systems. The use of mechanical type
checks and theorem proving system ensures a level of accuracy hardly reachable
in a pen-and-paper analysis.

63

5 Needham-Schroeder Public-Key Protocol

In contrast to the high-level requirements analysis of the rather state-oriented
SLE 66 model described in the previous section, we now turn to a more low-level
analysis of a communication-oriented system. Our aim is to demonstrate that
the ISM approach is capable of handling such quite different systems in a both
rigorous and elegant way as well.

As a typical example for such a distributed system, we take Lowe’s fix of
the Needham-Schroeder public-key authentication protocol [Low96], which we call
NSL. The emphasis here is not to provide new insights to the protocol, but to
use a well-known benchmark system that makes our approach easy to compare
with many other approaches that have been used to model (essentially) the same
system.

We base our ISM model on the formalization by Paulson [Pau98]. His so-
called “inductive approach” is tailored to semi-automated verification of cryp-
tographic protocols. Its great advantage is a high degree of automation, due to
abstraction to the core semantics of the protocols: event traces. On the other
hand, this makes both the models and the properties at least cumbersome to
express: state information is implicit, yet often it has to be referred to, which
is done by repeating suitable parts of the event history and sometimes even by
introducing auxiliary events.

5.1 AutoFocus Diagrams

As usual, our model of the NSL system consists of an agent called Alice aim-
ing to establish an authenticated session with another agent called Bob in the
presence of an Intruder according to the Dolev-Yao attacker model [DY83]. As

Fig. 6. NSL System Structure Diagram

64

will be motivated in §5.2, we furthermore introduce a server ISM called NGen
that generates nonces for all honest agents. The corresponding system structure
diagram in Figure 6 shows the four components with their data state (reflecting
the expectations of the two agents, the set of messages the intruder knows of,
and the set of already used nonces, respectively) and the named connections
between them.

Even if sometimes neglected, agents involved in communication protocols do
have state: their current expectations and knowledge. This is made explicit in
a convenient way by describing their interaction behavior with state transition
diagrams. Figure 7 shows the three states of the agent Alice and the transitions
between them, which have the general format guard : inputs : outputs :
assignments.

Fig. 7. NSL State Transition Diagram: Alice

In the initial state, Alice decides which agent B she wants to talk to and
sends the corresponding request consisting of a fresh nonce nA (which she has
obtained from the nonce server via her port NA) and her identity Alice, en-
crypted under the public key of the intended receiver. This message is actually
sent to the port AI of the intruder. Alice remembers her intended peer in the
local variable Apeer and the nonce she has used in the variable AnA. In the next
state she awaits a response from the prospective peer, decrypts it and checks its
authenticity by comparing the nonce value nA and agent name B with the corre-
sponding items in her memory. Only if the decryption and the two comparisons
are successful, the transition to her final state actually takes place, sending an
appropriate acknowledgment to her peer and storing the nonce nB just received
in her variable AnB. The third state represents (hopefully) successful session es-
tablishment where all essential parameters of the session may be referred to by
the local variables of Alice.

From the example of Alice’s transitions, one realizes that ISM control state
information is a natural way of fixing the order of protocol steps.

Bob’s state transitions are analogous and thus not shown here.

65

The transitions of the Intruder are quite different from the regular protocol
participants: it stores all messages received on its ports AI and BI in the local
variable known and can send any message derivable from its current knowledge
(by analyzing the messages contained in the set known, utilizing the decryption
keys it knows of, and synthesizing messages from the resulting pieces) to the
ports IA and IB, as depicted by Figure 8. The figure reveals a weakness of

Fig. 8. NSL State Transition Diagram: Intruder

modeling with AutoFocus: there is a lot of redundancy among each of the two
pairs of transitions (where the difference is just in the port names used), which
can be avoided in the Isabelle representation by using generic transitions (where
the port used for input or output is a variable that may hold either of the two
possible values, as shown below).

Note that the intruder may take part in any number of sessions simultane-
ously. If the analysis needs to include the possibility that a regular agent takes
part in more than one protocol run simultaneously, this can be modeled by mul-
tiple instantiation of the respective agent — under the assumption that from
that agent’s perspective the protocol runs are independent of each other.

The transition diagram of NGen is similar to the one of the intruder, except
that there are no transitions with input.

5.2 Isabelle Definition

This section gives parts of our Isabelle representation of NSL. Refer to §3.4 for the
details of ISM sections. We do not show the definitions of the various state and
message components here since they are straightforward and analogous to the
SLE66 model. Moreover, we give only the ISM definitions of those components
for which we have not already given an AutoFocus STD above.

ism Bob =
ports channel

inputs "{NB,IB}"

outputs "{BI}"

messages msg

states state — this is the sum of the four state types of the system com-
ponents, required because of the type problem mentioned in §2.1

control B_control init "Idle"

data B_data init "B0"

66

transitions
Resp: Idle → Resp

in NB "[Nonce nB]",
IB "[Crypt (pubK Bob) {|Nonce nA, Agent A |}]"

out BI "[Crypt (pubK A) {|Nonce nA, Nonce nB, Agent Bob |}]"
post "Bpeer := A, BnA := nA, BnB := nB"

Ack’: Resp → Conn

pre "nB = BnB s"

in IB "[Crypt (pubK Bob) (Nonce nB)]"

Note that Bob’s first transition Resp takes two inputs, from the nonce generator
and the intruder, and produces one output. If we modeled this transition using
IOAs, we would have needed three transitions with intermediate states. The
precondition of transition Ack’ could have been made implicit by moving the
comparison as a pattern to the in part, yet we make it explicit in order to
emphasize its importance. The local variable BnB is used to store the value of
the nonce expected, while the other two variables express Bob’s view to whom
he is connected in which session. In Paulson’s model, this state information is
implicit in the event trace.

Modeling the freshness of nonces is an interesting problem, for which we are
aware of essentially four solutions, each with their pros and cons.

– In Paulson’s model [Pau98], nonces are generated non-deterministically un-
der the side condition that they do not already appear in the current mes-
sage/event history. This criterion refers to the semantic and system-global
notion of event traces — something not available from the (local) perspective
of ISMs.

– One could combine local and global freshness conditions and let each agent
generate its own nonces: by producing fresh values locally and combining
them with the globally unique agent identifier. The drawback of this solution
is that each nonce issuer has to implement the mechanism just described.

– One could enforce global freshness by adding an axiom restricting system
runs in the desired way. We prefer a more constructive approach here and
derive the required freshness property as a lemma.

– Our solution is to introduce a nonce server component called NGen that
performs the generation of nonces for all agents in a centralized fashion. In
this way we can ensure global freshness with a constructive local criterion.

A further motivation to us for selecting the fourth solution just mentioned was
that it makes the communication patterns of the agents more interesting be-
cause Bob has a transitions that inputs from two sources simultaneously. Note
that NGen is just a modeling aid and thus its correct interplay with the agents,
including authentication issues, does not need to be analyzed.

The ISM definition of NGen is rather simple because NGen does not require
control state information and its local state consists only of the single variable
storing the set of all nonces that already have been used. Therefore, we may
identify the whole local state with this variable and call it used, eliminating

67

the need to define a record type and use the corresponding record selectors and
updates.

ism NGen =
ports channel

inputs "{}"

outputs "{NA,NB}"

messages msg

states state

data "nonce set" init "N0" name "used"

transitions
Cackle:

pre "ch ∈ {NA, NB}", "n /∈ used"

out ch "[Nonce n]"

post "insert n (used)"

Note that the output port ch is (non-deterministically) selected from the set
of two distinct names, which ensures the exclusive use of each nonce.

The family of all four ISMs is composed in parallel to form the NSL system.
It is easy to prove that this ISM family is closed and all its members, as well as
their parallel composition, are well-formed.

5.3 Properties

Properties of protocols specified with ISMs may be expressed with reference
to both the state of agents and the messages exchanged. In the case of NSL,
the most interesting property is authentication of Alice to Bob (actually, even
session agreement [Low97] from Bob’s view), which we formulate as

[[Alice /∈ bad; Bob /∈ bad; (b,s)#cs ∈ NSL_Runs]] =⇒
(∃ nA. Bob_state s = (Conn, (|Bpeer=Alice, BnA=nA, BnB=nB |))) −→
(∃ (b’,s’) ∈ set cs.

(∃ nA. Alice_state s’ = (Wait, (|Apeer=Bob , AnA=nA, AnB=nB |))))

This can be quite intuitively read as: if in the current state s of the system Bob
believes to be connected to Alice within a session identified by the nonce nB
then there is an earlier state s’ where Alice was in the waiting state referring
to the same nonce nB after initiating a connection with Bob.

It is interesting to compare the above formulation with Paulson’s9:
[[A /∈ bad; B /∈ bad; evs ∈ ns_public;

Crypt (pubK B) (Nonce NB) ∈ parts (spies evs);

Says B A (Crypt (pubK A) {|Nonce NA,Nonce NB,Agent B |}) ∈ set evs

]] =⇒
Says A B (Crypt (pubK B) {|Nonce NA,Agent A |}) ∈ set evs

9 http://isabelle.in.tum.de/library/HOL/Auth/NS_Public.html

68

http://isabelle.in.tum.de/library/HOL/Auth/NS_Public.html

This statement is necessarily more indirect than ours since the beliefs of the
agents have to be coded by elements of the event history. At least in this case,
all messages of a protocol run have to be referred to. Note further that this
formulation makes stronger assumptions than ours because an agreement on the
value of the nonce NB is involved.

Due to the extra detail concerning agent state and the input buffers (which
are not actually required for the NSL protocol), the proofs within the ISM ap-
proach are more painful and require more lemmas about intermediate states of
protocol runs than Paulson’s inductive proofs. On the other hand, the semi-
automatic proofs within the ISM approach probably scale better.

There are about a dozen lemmas proved by rule induction, most of which deal
with the freshness and usage of nonces generated by NGen. The main theorem is
proved employing a variant of Schneider’s rank function approach [Sch97], which
we describe in detail in [Ohe02, §3].

6 Conclusion

ISMs are designed as high-level I/O automata, with additional structure and
communication facilities. Like IOAs, ISMs are suitable for describing typical
state-based communication systems relevant for security analysis, where ISM
provide increased simplicity wrt. specifying component interaction via buffered
communication and means to directly relate input and output actions within a
single transition.

We have shown that the ISM approach is equally applicable to a variety of
security analysis tasks, ranging from high-level security modeling and require-
ments analysis, typically showing less system structure but increased complexity
of state transitions, to security analysis of distributed systems including crypto-
graphic protocols, likely to exhibit advanced system structuring. The examples
explicate the importance of a fully formalized strategy and mechanized proofs.
In particular, the LKW model has been significantly improved by identifying
hidden assumptions and completing sloppy argumentation.

The ISM approach offers graphic representation by means of AutoFocus Sys-
tem Structure Diagrams and State Transitions Diagrams. A tool program closely
relates these graphical development and documentation capabilities with the for-
mal system specification and verification capabilities of the mechanical theorem
prover Isabelle/HOL.

Further work on ISMs includes the extension of the proof support in the ISM
level concerning e.g. refinement and the provision of a specification language
based on temporal logic. Additional AutoFocus capabilities may be made avail-
able, including further systems views like event traces and simulation, as well as
test case generation.

In brief, the Interacting State Machines approach turns out to offer good
support for formal security analysis in the way required within an industrial
environment, meeting the goals stated in §1.2.

69

Acknowledgements. We thank Guido Wimmel, Thomas Kuhn and several
anonymous referees for their comments on earlier versions of this article.

References

AGKS99. David Aspinall, Healfdene Goguen, Thomas Kleymann, and Dilip Sequeira.
Proof General, 1999. http://www.proofgeneral.org/.

AHIP01. Atmel, Hitachi Europe, Infineon Technologies, and Philips Semiconductors.
Smartcard IC Platform Protection Profile, Version 1.0, July 2001. http:

//www.bsi.de/cc/pplist/ssvgpp01.pdf.
But99. Michael Butler. csp2B : A practical approach to combining CSP and B. In

Proc. of FM’99: World Congress on Formal Methods, pages 490–508, 1999.
CC99. Common Criteria for Information Technology Security Evaluation (CC),

Version 2.1, 1999. ISO/IEC 15408.
DY83. Danny Dolev and Andrew C. Yao. On the security of public key protocols.

IEEE Transactions on Information Theory, IT-29(12):198–208, March 1983.
Fis00. Clemens Fischer. Combination and implementation of processes and data:

from CSP-OZ to Java. PhD thesis, Univ. of Oldenburg, 2000.
GL98. Stephen J. Garland and Nancy A. Lynch. The IOA language and toolset:

Support for designing, analyzing, and building distributed systems. Tech-
nical Report MIT/LCS/TR-762, Laboratory for Computer Science, MIT,
August 1998.

HSSS96. Franz Huber, Bernhard Schätz, Alexander Schmidt, and Katharina Spies.
Autofocus - a tool for distributed systems specification. In Proceedings
FTRTFT’96 - Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems, volume 1135 of LNCS, pages 467–470. Springer-Verlag, 1996. See
also http://autofocus.in.tum.de/index-e.html.

ITS91. Information Technology Security Evaluation Criteria (ITSEC), 1991.
JW01. Jan Jürjens and Guido Wimmel. Formally testing fail-safety of electronic

purse protocols. In Automated Software Engineering. IEEE Computer Soci-
ety, 2001.

Kay01. Dilsun Kirli Kaynar. IOA language and toolset, 2001. http://theory.lcs.
mit.edu/tds/ioa.html.

KO03. Thomas Kuhn and David von Oheimb. Interacting State Machines for mo-
bility. In K. Araki, S. Gnesi, and D. Mandrioli, editors, Proc. of the 12th

International FME Symposium (FM’03), volume 2805 of LNCS. Springer,
September 2003. http://ddvo.net/papers/ISMfM.html.

LKW00. Volkmar Lotz, Volker Kessler, and Georg Walter. A Formal Security Model
for Microprocessor Hardware. In IEEE Transactions on Software Engineer-
ing, volume 26, pages 702–712, August 2000.

Low96. Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key proto-
col using FDR. In Proc. of TACAS, volume 1055 of LNCS, pages 147–166.
Springer-Verlag, 1996.

Low97. Gavin Lowe. A hierarchy of authentication specifications. In 10th Computer
Security Foundations Workshop (CSFW). IEEE Computer Society Press,
1997.

LT89. Nancy Lynch and Mark Tuttle. An introduction to input/output automata.
CWI Quarterly, 2(3):219–246, 1989. http://theory.lcs.mit.edu/tds/

papers/Lynch/CWI89.html.

70

http://www.proofgeneral.org/
http://www.bsi.de/cc/pplist/ssvgpp01.pdf
http://www.bsi.de/cc/pplist/ssvgpp01.pdf
http://autofocus.in.tum.de/index-e.html
http://theory.lcs.mit.edu/tds/ioa.html
http://theory.lcs.mit.edu/tds/ioa.html
http://ddvo.net/papers/ISMfM.html
http://theory.lcs.mit.edu/tds/papers/Lynch/CWI89.html
http://theory.lcs.mit.edu/tds/papers/Lynch/CWI89.html

Mül98. Olaf Müller. A Verification Environment for I/O Automata Based on For-
malized Meta-Theory. PhD thesis, Technische Univerität München, 1998.
See also http://isabelle.in.tum.de/IOA/.

Nan02. Sebastian Nanz. Integration of CASE tools and theorem provers: a frame-
work for system modeling and verification with AutoFocus and Isabelle.
Master’s thesis, TU München, 2002. http://www.doc.ic.ac.uk/~nanz/

publications/csthesis/.
NPW02. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL —

A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002. See also http://isabelle.in.tum.de/docs.html.

Ohe02. David von Oheimb. Interacting State Machines: a stateful approach to prov-
ing security. In Ali E. Abdallah, Peter Ryan, and Steve Schneider, editors,
Formal Aspects of Security, volume 2629 of LNCS, pages 15–32. Springer-
Verlag, 2002. http://ddvo.net/papers/ISMs.html.

Ohe04. David von Oheimb. Information flow control revisited: Noninfluence =
Noninterference + Nonleakage. In P. Samarati, P. Ryan, D. Gollmann,
and R. Molva, editors, Computer Security – ESORICS 2004, volume
3193 of LNCS, pages 225–243. Springer, 2004. http://ddvo.net/papers/

Noninfluence.html.
OL03. David von Oheimb and Volkmar Lotz. Generic Interacting State Machines

and their instantiation with dynamic features. In Jin Song Dong and Jim
Woodcock, editors, Formal Methods and Software Engineering (ICFEM),
volume 2885 of LNCS, pages 144–166. Springer, November 2003. http:

//ddvo.net/papers/GenISMs.html.
OLW02. David von Oheimb, Volkmar Lotz, and Gerog Walter. An interpretation of

the LKW model according to the SLE66CX322P security target. Unpub-
lished, January 2002.

OLW04. David von Oheimb, Volkmar Lotz, and Georg Walter. Analyzing SLE
88 memory management security using Interacting State Machines. In-
ternational Journal of Information Security, 2004. To appear; preprint:
http://ddvo.net/papers/SLE88_MM.html.

ON02. David von Oheimb and Sebastian Nanz. ISM Homepage: Documentation,
sources and distribution, 2002. http://ddvo.net/ISM/.

OWL03. David von Oheimb, Georg Walter, and Volkmar Lotz. A formal security
model of the infineon SLE 88 smart card memory management. In Proc.
of the 8th European Symposium on Research in Computer Security (ES-
ORICS), volume 2808 of LNCS. Springer, 2003. http://ddvo.net/papers/
SLE88_MM.html.

Pau98. Lawrence C. Paulson. The inductive approach to verifying cryptographic
protocols. Journal of Computer Security, 6:85–128, 1998.

PNW+. Lawrence Paulson, Tobias Nipkow, Markus Wenzel, et al. The Isabelle/HOL
library. http://isabelle.in.tum.de/library/HOL/.

S+. Oscar Slotosch et al. Validas Model Validation AG. http://www.validas.

de/.
Sch97. Steve Schneider. Verifying authentication protocols with CSP. In 10th

Computer Security Foundations Workshop (CSFW). IEEE Computer Soci-
ety Press, June 1997.

WW01. Guido Wimmel and Alexander Wisspeintner. Extended description tech-
niques for security engineering. In M. Dupuy and P. Paradinas, editors,
International Conference on Information Security (IFIP/SEC). Kluwer Aca-
demic Publishers, 2001. http://www4.in.tum.de/papers/WW01.html.

71

http://isabelle.in.tum.de/IOA/
http://www.doc.ic.ac.uk/~nanz/publications/csthesis/
http://www.doc.ic.ac.uk/~nanz/publications/csthesis/
http://isabelle.in.tum.de/docs.html
http://ddvo.net/papers/ISMs.html
http://ddvo.net/papers/Noninfluence.html
http://ddvo.net/papers/Noninfluence.html
http://ddvo.net/papers/GenISMs.html
http://ddvo.net/papers/GenISMs.html
http://ddvo.net/papers/SLE88_MM.html
http://ddvo.net/ISM/
http://ddvo.net/papers/SLE88_MM.html
http://ddvo.net/papers/SLE88_MM.html
http://isabelle.in.tum.de/library/HOL/
http://www.validas.de/
http://www.validas.de/
http://www4.in.tum.de/papers/WW01.html

Index

AutoFocus, 40

closed, 46
composite runs, 46
configuration, 41, 45
control state, 41
currying, 43

data state, 41
Data Type Definitions (DTDs), 40

Extended Event Traces (EETs), 40

Higher-Order Logic (HOL), 40

I/O Automata (IOAs), 39
initial state, 41
Interacting State Machine (ISM), 41
interaction, 41
IOA Language and Toolset, 39
Isabelle, 40

LKW model, 50

local state, 41

message families, 43

NSL, 64

open runs, 44

parallel composition, 45
port, 41

Quest, 46

run, 42

SLE 66, 49
State Transition Diagrams (STDs), 40
system, 41
System Structure Diagrams (SSDs), 40

transitions, 42

well-formed, 44, 46

Verifying the L4 Virtual Memory Subsystem

Harvey Tuch and Gerwin Klein

National ICT Australia?, Sydney, Australia
{gerwin.klein|harvey.tuch}@nicta.com.au

Abstract. We describe aspects of the formalisation and verification of
the L4 µ-kernel. Starting from an abstract model of the virtual memory
subsystem in L4, we prove safety properties about this model, and then
refine the page table abstraction, one part of the model, towards C source
code. All formalisations and proofs have been carried out in the theorem
prover Isabelle.

1 Introduction

L4 is a second generation microkernel based on the principles of minimality, flex-
ibility, and efficiency [12]. It provides the traditional advantages of the micro-
kernel approach to system structure, namely improved reliability and flexibility,
while overcoming the performance limitations of the previous generation of mi-
crokernels. With implementation sizes in the order of 10,000 lines of C++ and
assembler code it is about an order of magnitude smaller than Mach and two
orders of magnitude smaller than Linux.

The operating system (OS) is clearly one of the most fundamental com-
ponents of non-trivial systems. The correctness and reliability of the system
critically depends on the OS. In terms of security, the OS is part of the trusted
computing base, that is, the hardware and software necessary for the enforcement
of a system’s security policy. It has been repeatedly demonstrated that current
operating systems fail at these requirements of correctness, reliability, and secu-
rity. Microkernels address this problem by applying the principles of minimality
and least privilege to operating system architecture. However, the success of this
approach is still predicated on the microkernel being designed and implemented
correctly. We can address this by formally modelling and verifying it.

The design of L4 is not only geared towards flexibility and reliability, but
also is of a size which makes formalisation and verification feasible. Compared
to other operating system kernels, L4 is very small; compared to the size of
other verification efforts, 10,000 lines of code is still considered a very large and
complex system. Our methodology for solving this verification problem is shown
in Fig. 1. It is a classic refinement strategy. We start out from an abstract model
of the kernel that is phrased in terms of user concepts as they are explained in

? National ICT Australia is funded through the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council

Fig. 1. Overview

the L4 reference manual [10]. This is the level at which most of the safety and
security theorems will be shown. We then formally refine this abstract model
in multiple property preserving steps towards the implementation of L4. The
last step consists of verifying that the C++ and assembler source code of the
kernel correctly implements the most concrete refinement level. At the end of
this process, we will have shown that the kernel source code satisfies the safety
and security properties we have proved about the abstract model.

In this paper we give an overview of some of the steps in this refinement
process. L4 provides three main abstractions: threads, address spaces, and inter-
process communication (IPC). We have chosen to start with address spaces. This
is supported by the virtual memory subsystem of the kernel and is fundamental
for implementing separation and security policies on top of L4. We first show an
abstract model of address spaces, describe the framework in which the refinement
process proceeds and then concentrate on the implementation of one particular
operation of the abstract model. This operation is implemented in the Kernel
using page tables of which we again first show an abstract view and then provide
an implementation of some of its operations in a programming language that in
its level of abstraction is close to C.

Earlier work on operating system kernel formalisation and verification in-
cludes PSOS [15] and UCLA Secure Unix [20]. The focus of this work was on
capability-based security kernels, allowing security policies such as multi-level
security to be enforced. These efforts were hampered by the lack of mechanisa-
tion and appropriate tools available at the time and so while the designs were
formalised, the full verification proofs were not practical. Later work, such as
KIT [2], describes verification of properties such as process isolation to source
or object level but with kernels providing far simpler and less general abstrac-
tions than modern microkernels. There exists some work in the literature on
the modelling of microkernels at the abstract level with varying degrees of com-
pleteness. Bevier and Smith [3] specify legal Mach states and describe Mach
system calls using temporal logic. Shapiro and Weber [17] give an operational

74

semantics for EROS and prove a confinement security policy. Our work differs
in that we plan to formally relate our model to the implementation. Some case
studies [6, 4, 19] appear in the literature in which the IPC and scheduling sub-
systems of microkernels have been described in PROMELA and verified with
the SPIN model checker. These abstractions were not necessarily sound, having
been manually constructed from the implementations, and so while useful for
discovering concurrency bugs do not provide guarantees of correctness. Finally,
the VFiasco project, working with the Fiasco implementation of L4, has pub-
lished exploratory work on the issues involved in C++ verification at the source
level [7].

After introducing our notation in the following section, we first present the
abstract conceptual model of virtual memory in L4 in section 3, and then show
parts of the refinement of the memory lookup operation in this model towards
a page table implementation in section 4.

2 Notation

Our meta-language Isabelle/HOL conforms largely to everyday mathematical
notation. This section introduces further non-standard notation and in particular
a few basic data types with their primitive operations.

The space of total functions is denoted by ⇒. Type variables are written ′a,
′b, etc. The notation t:: τ means that HOL term t has HOL type τ .

The cons of an element x to a list xs is written x # xs, and [] is the empty
list. Pairs come with the two projection functions fst :: ′a × ′b ⇒ ′a and
snd :: ′a × ′b ⇒ ′b. We identify tuples with pairs nested to the right: (a, b,
c) is identical to (a, (b, c)) and ′a × ′b × ′c is identical to ′a × (′b × ′c).

datatype ′a option = None | Some ′a

adjoins a new element None to a type ′a. For succinctness we write bac instead
of Some a.

Function update is written f (x := y) where f :: ′a ⇒ ′b, x :: ′a and y :: ′b.
Partial functions are modelled as functions of type ′a ⇒ ′b option, where

None represents undefinedness and f x = byc means x is mapped to y. We call
such functions maps, and abbreviate f (x :=byc) to f (x 7→ y). The map λx . None
is written empty, and empty(. . .), where . . . are updates, abbreviates to [. . .]. For
example, empty(x 7→y) becomes [x 7→ y].

Implication is denoted by =⇒ and [[A1; . . .; An]] =⇒ A abbreviates A1 =⇒
(. . . =⇒ (An =⇒ A). . .).

Records in Isabelle [14], as familiar from programming languages, are essen-
tially tuples with named fields. The type declaration

record point =
X :: nat
Y :: nat

75

creates a new record type point with two components X and Y of type nat.
The notation (|X=0, Y =0|) stands for the element of type point that has both
components set to 0. Isabelle automatically creates two selector functions X ::
point ⇒ nat and Y :: point ⇒ nat such that, e.g. X (|X=0, Y =0|) = 0. Updating
field Y of a record p with value n is written p (|Y := n|). As for function update,
multiple record updates separated by comma are admitted.

3 Abstract Address Space Model

The virtual memory subsystem in L4 provides a flexible, hierarchical way of
manipulating the mapping from virtual to physical memory pages of address
spaces at user-level. We now present a formal model for address spaces. A first
description of this model has already appeared in [9]. For completeness, we repeat
parts of it in sections 3.1 and 3.2. The treatment of abstract datatypes in section
3.3 is updated to incorporate operations with output.

3.1 Address Spaces

Fig. 2 illustrates the concept of hierarchical mappings. Large boxes depict virtual
address spaces. The smaller boxes inside stand for virtual pages in the address
space. The rounded box at the bottom is the set of physical pages. The arrows
stand for direct mappings which connect pages in one address spaces to addresses
in (possibly) other address spaces. In well-behaved states, the transitive closure
of mappings always ends in physical pages. The example in Fig. 2 maps virtual
page v1 in space n1, as well as v2 in n2, and v4 in n4 to the physical page r1.

Fig. 2. Address Spaces

Formally, we use the types R for the physical pages (r1, r2, etc.), V for
virtual pages (v1, v2, etc.), and N for the names of address spaces (n1, n2, etc.).

A position in this picture is determined uniquely by either naming a virtual
page in a virtual address space, or by naming a physical page. We call these the
mappings M :

76

datatype M = Virtual N V | Real R

An address space associates with each virtual page either a mapping, or
nothing (the nil page). We implement this in Isabelle by the option datatype:

types space = V ⇒ M option

The machine state is then a map from address space names to address spaces.
Not all names need to be associated with an address space, so we use option
again:

types state = N ⇒ space option

To relate these functions to the arrows in Fig. 2, we use the concept of paths.
The term s ` x ;1 y means that in state s there is a direct path from position
x to position y. There is a direct path from position Virtual n v to another
position y if in state s the address space with name n is defined and maps the
virtual page v to y. There can be no paths starting at physical pages. Formally,

s ` x ;1 y = (∃n v σ. x = Virtual n v ∧ s n = bσc ∧ σ v = byc)

We write ` ;+ for the transitive and ` ;∗ for the reflexive and
transitive closure of the direct path relation.

3.2 Operations

The L4 kernel exports the following basic operations on address spaces: unmap,
flush, map, and grant. The former two operations remove mappings, the latter
two create or move mappings. We explain and define them below.

Fig. 3 illustrates the unmap n v operation. It is the most fundamental of the
operations above. We say a space n unmaps v if it removes all mappings that
depend on Virtual n v, or in terms of paths if it removes all edges leading to
Virtual n v.

Fig. 3. The unmap operation (before and after)

To implement this, we use a function clear that, given name n, page v, and
address space σ in a state s, returns σ with all v ′ leading to Virtual n v mapped
to None.

77

clear :: N ⇒ V ⇒ state ⇒ space ⇒ space
clear n v s σ ≡
λv ′. case σ v ′ of None ⇒ None
| bmc ⇒ if s ` m ;∗ Virtual n v then None else bmc

An unmap n v in state s then produces a new state in which each address
space is cleared of all paths leading to Virtual n v.

unmap :: N ⇒ V ⇒ state ⇒ state
unmap n v s ≡ λn ′. case s n ′ of None ⇒ None | bσc ⇒ bclear n v s σc

For updating a space with name n at page v with a new mapping m we write
n,v ← m, where m may be None.

n,v ← m ≡ λs. s(n := case s n of None ⇒ None | bσc ⇒ bσ(v := m)c)

With this, the flush operation is simply unmap followed by setting n,v to
None.

flush :: N ⇒ V ⇒ state ⇒ state
flush n v ≡ n,v ← None ◦ unmap n v

The remaining two operations map and grant establish new mappings in the
receiving address space. To ensure a consistent new state, this new mapping
must ultimately be connected to a physical page. We call a mapping m valid in
state s (written s ` m) if it is a physical page, or if it is of the form Virtual n v
and is the source of some direct path. We show later that in all reachable states
of the system, this definition is equivalent to saying that the mapping leads to
a physical page.

s ` m ≡ case m of Virtual n v ⇒ ∃ x . s ` m ;1 x | Real r ⇒ True

Before the kernel establishes a new value, the destination is always flushed.
This may invalidate the source. The operation only continues if the source is
still valid, otherwise it stops. We capture this behaviour in a slightly modified
update notation ↼:

n,v ↼ m ≡ λs. let s0 = flush n v s in (if s0 ` m then n,v ← bmc else id) s0

Fig. 4. The map operation (before and after)

In L4, an address space n can map a page v to another space n ′ at page v ′.
Again, the operation only goes ahead, if the mapping Virtual n v is valid:

78

map :: N ⇒ V ⇒ N ⇒ V ⇒ state ⇒ state
map n v n ′ v ′ s ≡ if ¬ s ` Virtual n v then s else (n ′,v ′ ↼ Virtual n v) s

Fig. 4 shows an example for the map operation. Address space n maps page
v to n ′ at v ′. The destination n ′,v ′ is first flushed and then updated with the
new mapping Virtual n v.

A space n can also grant a page v to v ′ in n ′. As illustrated in Fig. 5, granting
updates n ′,v ′ to the value of n at v and flushes the source n,v.

Fig. 5. The grant operation (before and after)

grant :: N ⇒ V ⇒ N ⇒ V ⇒ state ⇒ state
grant n v n ′ v ′ s ≡
if ¬ s ` Virtual n v then s
else let bσc = s n; bmc = σ v in (flush n v ◦ n ′,v ′ ↼ m) s

This concludes the kernel operations on address spaces. We have also mod-
elled the hardware memory management unit (MMU). On this abstract level, all
the MMU does is lookup: it determines which physical page needs to be accessed
for each virtual page v and address space n. We write s ` n,v � brc if lookup
of page v in the address space with name n in state s yields the physical page
r. As we already have the concepts of paths, this is easily described formally:

s ` n,v � brc = s ` Virtual n v ;+ Real r
s ` n,v � None = (∃σ. s n = bσc ∧ σ v = None) ∨ s n = None

The model in this section is based on an earlier pen-and-paper formalisation
of L4 address spaces by Liedtke [12]. Formalising it in Isabelle/HOL eliminated
problems like the mutual recursive definition of the update and flush functions
being not well-founded. It would be well-founded—at least on reachable kernel
states—if the model had the property that no loops can be constructed in ad-
dress spaces. This is not true in the original model. The operation map n v n ′ v ′

followed by grant n ′ v ′ n v is a counter example. We have introduced the formal
concept of valid mappings to establish this no-loops property as well as the fact
that any page that is mapped at all is mapped to a physical address.

3.3 An abstract data type for virtual memory

In the following we phrase the model of virtual memory and of the MMU hard-
ware in terms of an abstract data type consisting of the type state and the

79

operations detailed above. This data type (not to be confused with Isabelle’s
keyword datatype) is used implicitly by any user-level program. Even if the
program does not invoke any mapping operations directly, the CPU performs a
lookup operation with every memory access.

Putting the operations in terms of an abstract data type enables us to formu-
late refinement explicitly: if the data type of the abstract address spaces model
is replaced with the data type of more concrete models (and finally the imple-
mentation) the program will not have any observable differences in behaviour.

Formally we define an abstract data type as a record consisting of an initial
set of states and of a transition relation that models execution with return values
of type ′o:

record (′a, ′j , ′o) DataType =
Init :: ′a set
Step :: ′j → (′a × ′a × ′o) set

For our virtual memory model, the operations are enumerated in the index type
VMIndex :

datatype VMIndex = create N | unmap N V | flush N V | map N V N V
| grant N V N V | lookup N V

The abstract model A in terms of a (state, VMIndex , R option) DataType is
then:

Init A = {[σ0 7→ σ] |σ. inj p σ ∧ ran σ ⊆ range Real}
Step A (lookup n v) = {(s, s ′, r) | s = s ′ ∧ s ` n,v � r}
Step A (create n) = {(s, s ′, r) | r = None ∧ s n = None ∧ s ′ = s(n 7→ empty)}
Step A (unmap n v) = {(s, s ′, r) | r = None ∧ s n 6= None ∧ s ′ = unmap n v s}
Step A (flush n v) = {(s, s ′, r) | r = None ∧ s n 6= None ∧ s ′ = flush n v s}
Step A (map n v n ′ v ′) =
{(s, s ′, r) | r = None ∧ s n 6= None ∧ s n ′ 6= None ∧ s ′ = map n v n ′ v ′ s}
Step A (grant n v n ′ v ′) =
{(s, s ′, r) | r = None ∧ s n 6= None ∧ s n ′ 6= None ∧ s ′ = grant n v n ′ v ′ s}

The boot process creates an address space σ0 that is an injective mapping
from virtual to physical pages. The functions ran and range return the codomain
of a function, where ran works on functions ′a ⇒ ′b option and range on total
functions. Injectivity is constrained to the part of the function that returns bxc:
inj p f ≡ inj-on f {x | ∃ y . f x = byc}.

The lookup operation is the only operation that returns a value. All other
operations return None.

Creating a new address space n is modelled by updating the state s at n
with the predefined map empty. The other mapping operations have been de-
fined above. All of them require the address spaces they operate on to exist.
This condition is ensured automatically in the current L4 implementation as the
address spaces are determined by sender and receiver of an IPC operation.

The correctness of the implementation with respect to the abstraction is
established by showing the concrete model to be a refinement of the abstract

80

model. Here refinement is taken to mean data refinement [5] and we use the proof
technique of simulation. Simulation between an abstract (′a, ′j , ′o) DataType
and a concrete (′c, ′j , ′o) DataType is formalized as follows.

The step relations for each operation are of type (′a × ′a × ′o) set. It is
convenient to have a relation for these operations of type (′a × ′o) × (′a ×
′o) below, so we introduce the function up. This gives the semantics of the
operations on the state space ′a × ′o. Since the value of the ′o component in
the pre-state has no effect on the semantics of the operations in an ADT it can
be left unrestricted.

up r ≡ {((a, i), b, k) | (a, b, k) ∈ r}

The type of the abstraction relation r is (′a × ′c) set. ido lifts this to (′a × ′o)
× (′c × ′o).

ido r ≡ {((s, k), s ′, k ′) | k = k ′ ∧ (s, s ′) ∈ r}

A relation c is an L-subset of a relation a under the relation r if the following
holds, where a ; b is relational compososition of a and b.

r ` c ⊆L a ≡ r ; c ⊆ a ; r

InitA

InitC
R

StepA(j)

StepC(j)

RR

Fig. 6. Simulation

A forward simulation exists if the diagrams in Figure 6 commute. That is, there
exists a relation such that the initial states of the concrete model are a subset of
those in the abstract model under the relational image of the lifted abstraction
relation, and if for each step operation the concrete step is an L-subset of the
abstract step relation under r.

Lr r C A ≡
let ro = ido r
in Init C × UNIV ⊆ ro ‘‘ (Init A × UNIV) ∧

(∀ j . ro ` up (Step C j) ⊆L up (Step A j))

81

We write C ≤F A when concrete data type C simulates abstract data type
A:

C ≤F A ≡ ∃ r . Lr r C A

3.4 Properties

We have shown a number of safety properties about the abstract address space
model. They are formulated as invariants over the abstract datatype. A set of
states I is an invariant if it contains all initial states and if execution of any
operation in a state of I again leads to a state in I. We write D |= I when I is
an invariant of data type D.

Theorem 1. There are no loops in the address space structure.

A |= {s | ∀ x . ¬ s ` x ;+ x}

The proof is by case distinction on the operations and proceeds by observing
how each operation changes existing paths. Theorem 1 is significant for im-
plementing the lookup function efficiently. It also ensures that internal kernel
functions can walk the corresponding data structures naively. Together with the
properties below it says that address spaces always have a tree structure.

Theorem 2. All valid pages translate to physical pages.

A |= {s | ∀ x . s ` x −→ (∃ r . s ` x ;∗ Real r)}

The proof is again by case distinction on the operations. Together with the
following theorem we obtain that address lookup is a total function on data
type A.

Theorem 3. The lookup relation is a function.

[[s ` n,v � r ; s ` n,v � r ′]] =⇒ r = r ′

This theorem follows directly from the fact that paths are built on functions.
That address lookup is a total function may sound like merely a nice formal

property, but it is quite literally an important safety property in reality. Un-
defined behaviour, possibly physical damage, may result if two conflicting TLB
entries are present for the same virtual address. The current ARM reference
manual [1, p. B3-26] explicitly warns against this scenario.

3.5 Simplifications and Assumptions

The current model makes the following simplifications and assumptions.

– The L4Ka::Pistachio API stipulates two regions per address space that are
shared between the user and kernel, the kernel interface page (KIP) and
user thread control blocks (UTCBs). These should have a valid translation
from virtual to physical memory pages, but can not be manipulated by the
mapping operations.

82

– The mapping operations in L4 work on regions of the address space rather
than individual pages. These regions, known as flexpages, are 2kb, k ≥ 0
aligned and sized where b is the minimum page size on the architecture. This
introduces significant complexity in the implementation and has a number of
boundary conditions of interest, so adding this to the abstract model would
be beneficial. At the same time, it is possible to create systems using L4 that
only use the minimum flexpage size so this omission does not pose a serious
limitation to the utility of the model.

– map and grant are implemented through the IPC primitives in L4 and involve
an agreement on the region to be transferred between sender and receiver.
This can be added when the IPC abstraction is modelled.

– Flexpages also have associated read, write and execute access rights. At
present the model can be considered as providing an all or nothing view of
access rights.

– We assume that all of the mapping operations are atomic, which is the case in
the current non-preemptable implementation, and a single processor, hence
a sequential system.

4 Page Tables

The model in the previous section provides an abstract model of address spaces
in L4 but does not bear much resemblance to the kernel implementation. This
is not surprising since the kernel must provide an efficient realisation of the
mapping operations and the code supporting this executes under time and space
restrictions.

Below we consider the refinement of one component of the virtual memory
subsystem necessary for the implementation of address spaces. The models and
interfaces below are based on the existing page table implementation in the
L4Ka::Pistachio [11] kernel.

4.1 Abstract model

The implementation of address spaces is provided by the hardware and OS vir-
tual memory mechanisms. The lookup relation corresponds to the virtual-to-
physical mapping function provided by the MMU on the CPU. This translation
is carried out on every memory access and so is critical to system performance.
It is typically hidden in the processor pipeline by an associative cache, called
the translation-lookaside buffer (TLB). This holds a subset of mappings from
the page table data structure which is located in memory. The TLB caches page
table entries (PTEs), as in Figure 7 — a PTE for a page in the virtual ad-
dress space specifies the corresponding physical page, access rights, and other
page specific information, shown in Figure 8. On a TLB miss a hardware mech-
anism1 traverses the page table data structure to perform address translation.
1 On the ARM architecture. Other architectures might also rely on software mecha-

nisms to achieve the same goal.

83

Page table (N)

TLBV PTE

Fig. 7. PTE lookup through the TLB

The design of page table implementations is influenced by the direct and indirect
performance costs of this operation.

Physical page number
0m-1n-1

CR W X V

Fig. 8. Page table entry (PTE)

OffsetVirtual page number
0m-1n-1

Fig. 9. Virtual address

While we treated virtual page numbers and virtual addresses interchangeably
in the previous section, this will no longer be sufficient when considering the
specifics of page table implementations, since modern TLBs usually support
multiple page sizes, called superpages [18], in order to improve the coverage of
the TLB; a single PTE (and TLB entry) can then cover large regions of the
address space. Hence many virtual pages may be associated with a single virtual
address. An n-bit virtual addresses can be considered as consisting of an (n−m)-
bit virtual page number and an m-bit offset, as in Figure 9, where 2m is in the
set of page sizes supported by the the architecture. Mappings are then from 2m

84

Virtual
address
space

Physical
address
space

{r}
{r,w,x}

{w} {x}

Fig. 10. Mappings from virtual to physical pages

sized, aligned regions of the virtual address space to the physical address space,
shown in Figure 10.

Virtual addresses are modelled using a theory of fixed-width words in Isabelle,
where the word type is a quotient type with equivalence classes derived by taking
the natural numbers modulo the word size. The theory is imported from the
HOL4 system. We use the word32 type for virtual addresses, although nothing
should depend on this particular value for word size and the model and proofs
presented here should be the same for any size of virtual addresses.

types V = word32

The function page-bits ps gives the value of m for page size ps. We introduce the
type PTESize of which values are supported (super)page sizes.

consts page-bits :: PTESize ⇒ nat

The vpn for a virtual address is its virtual page number as a nat. The function
w2n converts from a value of type word32 to the corresponding nat. n2w does
the reverse.

vpn v ps ≡ w2n v div 2 ˆ page-bits ps

At a given page size, two virtual addresses with identical virtual page numbers
are of the same page.

page-equiv l v v ′ ≡ vpn v l = vpn v ′ l

page-set v ps gives the set of virtual addresses for the page of size ps containing
the virtual address v. Figure 11 gives two example page-sets for a virtual address
v with superpage sizes m0 and m1.

page-set v l ≡ {v ′ | page-equiv l v v ′}

We begin with the description of the state space for the abstract model by intro-
ducing several new types. We model page tables as function from N × V to a
pointer to a PTE stored in a heap. We choose to model explicitly at the abstract

85

OffsetVirtual page number
0m0-1n-1

V

Virtual address
space

2m0

OffsetVirtual page number
0m1-1n-1

V

Virtual address
space

2m1

Fig. 11. Example page-sets

level indirection with respect to PTEs, based on the interface observed in the
L4Ka::Pistachio linear page table implementation. This allows for efficient im-
plementation of operations that modify PTEs since unnecessary traversal of the
page table can be avoided. The type of PTE pointers is PTEName. In addition,
a pointer type TreeListNodeName is introduced. The page table ADT is utilised
by the mapping database (MDB) that stores the map/grant relationships be-
tween address spaces as illustrated in section 3.1. In addition to the fields that
are usually present in a PTE, the MDB requires that each PTE has the cor-
responding virtual address and a pointer of type TreeListNodeName associated
with it.

An abstract PTE is modelled as a record type. Paddr contains the physical
page number for the page, R,W ,X specify the access rights for this mapping,
and Cached indicates whether the data accessed through this mapping may be
stored in the data or instruction caches. As part of the MDB required interface
we also conceptually associate the two additional fields MapNode and Vaddr
with the PTE as explained above.

record PTEa =
Paddr :: R
R :: bool
W :: bool
X :: bool
Cached :: bool
MapNode :: TreeListNodeName
Vaddr :: V

The state space is then a partial function from N × V to the PTE pointer for
the mapping and the size of the mapping, and a heap for PTEs. In addition, the
N field of PTState stores which address spaces are currently active (have been
created).

86

types PageTable = N × V ⇒ (PTEName × PTESize) option
types PTEHeap = PTEName ⇒ PTEa

record PTState =
N :: N list
Heap :: PTEHeap
PageTable :: PageTable

The operations provided by the page table ADT and their return types are
enumerated in the following two type declarations.

datatype PTIndex = insert N V PTESize
| lookup N V
| getpaddr PTEName PTESize
| setpaddr PTEName R PTESize
| setlinknode PTEName TreeListNodeName V PTESize
| getmapnode PTEName V PTESize
| createspace

datatype PTResult = RInsert (PTEName × PTESize) option
| RLookup (PTEName × PTESize) option
| RGetPaddr R | RSetPaddr | RSetLinkNode
| RGetMapNode TreeListNodeName | RCreateSpace N

The ADT definition follows, with the semantics of these operations described
further below. The get and set operations for the physical page number (getpaddr
and setpaddr) are given, but omitted for the other fields (R,W ,X ,Cached) with
the exception of the last two, since they are identical in all but name.

Init P = {x | N x = [] ∧ PageTable x = empty}
Step P createspace = create-spacea

Step P (lookup n v) = lookupa n v
Step P (insert n v ps) = inserta n v ps
Step P (setpaddr p r ps) = set-paddra p r ps
Step P (getpaddr p ps) = get-paddra p ps
Step P (setlinknode p m v ps) = set-link-nodea p m v ps
Step P (getmapnode p v ps) = get-map-nodea p v ps

In the initial state there are no valid address spaces and hence no mappings.
Before mappings can be added, new address spaces need to be created. The

createspace operation picks and returns the name of the new address space non-
deterministically. It must be distinct from the name of any existing address
space.

create-spacea ≡
{(s, s ′, r) | ∃n. n /∈ set (N s) ∧ s ′ = s(|N := n # N s|) ∧ r = RCreateSpace n}

Lookup returns the PTE pointer and size of the mapping that contains v as-
suming a valid address space n is specified. The onus is on the caller to supply a
valid address space to avoid a potentially unnecessary check for validity on each
invocation of this operation.

87

lookupa n v ≡
{(s, s ′, r) | n ∈ set (N s) −→ s ′ = s ∧ r = RLookup (PageTable s (n, v))}

Insertion of new mappings is the most complicated of the operations in this
model. Assuming a valid address space argument is supplied, there are two pos-
sibilities here, depending on whether the mapping overlaps an existing mapping.
If an overlap exists then a conflicting mapping is not inserted. Conflicts occur if
the page-set for v at the given page size ps has a non-empty intersection with
the set of currently mapped virtual addresses. Figure 12 shows two examples of
this.

valid-vaddr pt n ≡ {x | pt (n, x) 6= None}

conflict n v ps pt ≡ valid-vaddr pt n ∩ page-set v ps 6= {}

If there is no conflict, update-page-table gives the new state, where an unused
location in the PTE heap is selected and all virtual addresses in page-set v ps
are set to this value with the given page size. The choice of location in the heap
is non-deterministic in this model.

Virtual address
space

page_set v0 m0

Virtual address
space

page_set v1 m1

Invalid mapping

Valid mapping (no conflict)

Valid mapping (conflict)

Fig. 12. Example conflicts with existing mappings

update-page-table n v ps ≡
{(s, s ′) | ∃ p. ¬ PageTable s `p p ∧

s ′ =
s(|PageTable :=

λ(n ′, v ′).
if n ′ = n ∧ v ′ ∈ page-set v ps then b(p, ps)c
else PageTable s (n ′, v ′)|)}

The result of this operation in the case of a successful insertion is the PTE
pointer for the new mapping. If insertion was not successful, but the existing
mapping fully contains the new one, a pointer to the existing mapping is re-
turned. Otherwise the operation returns None.

88

insert-result n v ps s ≡
case PageTable s (n, v) of None ⇒ None
| b(p, ps ′)c ⇒ if w2n ps < w2n ps ′ then b(p, ps ′)c else None

inserta n v ps ≡
{(s, s ′, r) | n ∈ set (N s) −→

(if conflict n v ps (PageTable s)
then (s, s ′) ∈ update-page-table n v ps else s = s ′) ∧

r = RInsert (insert-result n v ps s ′)}

The fields of the PTE can be set and retrieved through the heap in the following
operations. For each operation it is a precondition that the PTE pointer supplied
is valid and the page size at which it is mapped is also correctly provided as an
argument. A PTE pointer p is considered valid, pt `p p, if it is in the image of
the page table pt for some page size ps, pt `p p,ps if the pair (p, ps) is in this
image. The notation f ‘ A stands for the image of set A under f.

pt `p p ≡ p ∈ fst ‘ ran pt

pt `p p,ps ≡ (p, ps) ∈ ran pt

set-paddra p paddr ps ≡
{(s, s ′, r) | PageTable s `p p,ps −→

s ′ = s(|Heap := (Heap s)(p := Heap s p(|Paddr := paddr |))|) ∧
r = RSetPaddr}

get-paddra p ps ≡
{(s, s ′, r) | PageTable s `p p,ps −→ s ′ = s ∧

r = RGetPaddr (Paddr (Heap s p))}

Associated with each PTE is a link node. While not part of the fundamental
page table abstraction, this is required for the mapping database and other
operations in the kernel. The link node stores the virtual address and a pointer
to a corresponding node in the MDB for the mapping. In the implementation
this is optimised to be a single field, with the bitwise exclusive-OR of the values
stored in the link node. We model this by requiring the complementary value to
be passed as an argument to the inspection operations.

set-link-nodea p m v ps ≡
{(s, s ′, r) | PageTable s `p p,ps −→

s ′ =
s(|Heap := (Heap s)(p := Heap s p(|MapNode := m, Vaddr := v |))|) ∧
r = RSetPaddr}

get-map-nodea p v ps ≡
{(s, s ′, r) | PageTable s `p p,ps ∧ v = Vaddr (Heap s p) −→ s ′ = s ∧

r = RGetMapNode (MapNode (Heap s p))}

Some features that should be present in a complete page table model have been
omitted here and are currently being added to the model. These range from
fairly trivial changes to those necessary to increase the generality of the model.

89

An example of a small omission is the status and cache control bits in the PTE
which are not included for brevity. These do not differ conceptually from other
fields in the PTE such as permission bits for the purpose of this model. A more
important limitation is that on some architectures it may not be possible to
insert a mapping even if no conflicts exist due to the page table structure being
affected by nearby mappings. A hardware model for the TLB and page table
walker can be added to provide a lookup operation as described in the abstract
address spaces ADT, and to supply semantics for the cache and status bits in
the PTE. Finally, we assume translation and protection granularity are identical
which is not the case in general, for example sub-page permissions on the ARM
architecture.

4.2 Concrete model

A simple way to implement the page table would be to use a linear array in
physical memory, indexed with the virtual page number. This would have the
advantage of a fast lookup time, which is desirable as the page table lookup
operation is a major component of the TLB refill cost. Unfortunately, this is
wasteful of physical memory and does not scale with larger address spaces. For
example, consider a 32-bit virtual address space, with 4KB pages and a 24-
bit physical address space with 4KB frames2. Assume each page table entry is a
single word, 4 bytes. The frame number can easily be stored in the PTE, requiring
only 12 bits. However, the array will require 220 PTE locations, and hence require
222 bytes of contiguous storage in physical memory, which may potentially only
be used sparsely. In addition, this has poor support for superpages, with large
superpages requiring massive duplication of PTEs, making insertion and PTE
update operations costly.

Modern architectures and operating systems therefore use data structures
that balance the requirement for fast traversal and memory use considerations.
These include multi-level page tables, inverse page tables, hashed page tables [8]
and guarded page tables [13]. L4Ka::Pistachio implements a multi-level hierar-
chical page table (MLPT). The page table format defined by the ARM hardware,
a two-level page table, is an instance of this.

MLPTs are tree data structures where each node contains an array of a
fixed, level dependent, size. Elements of these arrays are either invalid, leaves
corresponding to PTEs in the abstract model, or pointers to the next level. They
provide both storage for valid PTE heap entries and the mapping function from
V to PTEName for an address space N. Lookup proceeds by indexing the root
table, with a base address equivalent to the address space name, with the most
significant kt bits of the virtual address, where ki is the number of bits in the
index field for level i and the page table has a maximum of t + 1 levels. Figure
13 shows a two-level page table with the root page table indexing occurring at
level 1. Each entry of the table corresponds to a contiguous region of the address
space. If the address space is of size 2n then the array will have 2kt entries and

2 Physical pages are also called frames.

90

Invalid

Leaf PTE

Next n

Offset
0

n-1
VPN

N

V

Level 0

Level 1

k1 k0

Fig. 13. Indexing during lookup and insertion

each entry will map a 2n−kt region. If either an invalid entry or leaf PTE is found
at the index then a pointer to this is returned. Otherwise, if the entry points to
a table at the next level then the algorithm recurses, with the next table, the
n− kt least significant bits of the virtual address and the next index size, kt−1,
until either a valid PTE is found or the bottom level is reached and a pointer
to the indexed entry is returned. If the returned pointer references a leaf PTE
then a valid (in the sense of the abstract model) mapping exists for the virtual
address.

Assuming no conflicts, insertion works similarly, with the exception that a
new node of appropriate size is allocated and linked to when an invalid node is
indexed at a level above the intended insertion point.

We describe the two larger operations, lookup and insertion, from the con-
crete model below. We utilise the verification environment of Schirmer [16] with
custom pretty-printing to provide C-like syntax. Keywords, procedure names,
and program variables referring to the current state are printed in typewriter
font. Normal Isabelle functions and constants are unchanged. In the Hoare triple
{|σ. P |} s {| Q σn |}, the name σ is bound to the pre-state, and σn refers to the
program variable n in state σ.

The concrete state space has 3 components in its global state — a heap for
nodes in the page table pt-h, a list of pointers allocated in the heap v-pt and the
set of currently active address spaces vN. We model arrays as lists and hence the
type of pt-h is given by

types PageTableHeap = PTabName ⇒ PTE list

where PTabName is the type of pointers to page table nodes and PTE is defined
as the disjoint union:

datatype PTE = Leaf PTEa | Next PTabName | Invalid

91

The type PTEName is now a pointer to an array entry and hence consists of
two components — a pointer to the base of the array and an index of type
PTabOffset.

types PTEName = PTabName × PTabOffset

For convenience we introduce two abbreviations when working with PTE-
Name pointers. The PTEName for a virtual address v at level l and node n is
given by ϕ n,v ,l. The PTE for a PTEName pointer in page table heap pt-h is
written as ψ pt-h p.

The names of address spaces are now synonymous with the root node in the
page table.

types N = PTabName

The source code for the page table lookup operation is given in Figure 15. The
parameters are found in variables n and v. Variables with a tmp prefix are local
to this function. Various functions are called inside the body of this function.
One such example is ptab index which performs the indexing operation for a
given page table level, shown in Figure 14.

procedures ptab-index (n,v ,l |r2) =
r = v >> hw pgshifts[w2n l] &

(1 << (hw pgshifts[w2n l + 1] - hw pgshifts[w2n l]) - 1);
r2 = (n, r);

Fig. 14. Page table indexing code

The function ptab index takes an address space name n, a virtual page v,
and a level l in the page table. The result is returned in variable r2. The ar-
ray hw pgshifts represents page-bits from the abstract model. The predicates
pte is valid and pte is subtree on PTENames indicate whether the derefer-
enced PTE has a flag different from Invalid or possesses a Next tag respectively.
For PTE s of the form Next n, pte get next gives the pointer to the next level
in the page table n. It is a precondition on all these functions that the sup-
plied pointer p is valid in the current state s, i.e. p ∈ set (v-pt- ′ s). We omit
the source code of these functions for brevity, with the intention that the source
code presented so far provides a sufficient idea of the level of abstraction and
language in which these are expressed.

The invariant is necessary to discharge the proof obligations related to the
Hoare triple used to show refinement. wfpt is a well-formedness predicate on the
page table structure, with conditions expressing properties of the tree structure,
the size of nodes at different levels, the height of the tree, etc. table-level is
a relation between page tables nodes and level numbers. R is the abstraction
function for the page table — a description of R, pt-lookup-f and pt-lookup-g is
provided in Section 4.3.

92

Page table insertion source code is provided in Figure 16. Two additional
functions are present here. pte make subtree creates a new node, allocating
an array n in the heap of size appropriate for the given level and setting the
PTE referenced by the supplied pointer to Next n. pte make leaf sets the PTE
referenced by the supplied pointer to a Leaf value with no access rights. The
invariant is similar to that for pt lookup, however the final conjunct describes
the changing page table structure as new levels are added.

It should be noted that there is not necessarily any overhead from structuring
the code as a series of function calls, since small functions can be either inlined
during code generation or flagged as inlineable to the compiler.

procedures pt-lookup(n,v |r5) =
{|σ. n ∈ vN ∧ wfpt (pt h, v pt, vN)|}
tmp level = pt-top-level;
tmp tab = n;

tmp pte = ptab index(tmp tab,v,tmp level);

tmp valid = pte is valid(tmp pte);

tmp subtree = pte is subtree(tmp pte);

while (!(tmp level == 0) && tmp valid && tmp subtree)

/* INV: {|wfpt (pt h, v pt, vN) ∧ w2n tmp level ≤ pt-top-level ′ ∧
tmp valid = pte-is-valid ′ pt h tmp pte ∧
tmp subtree = pte-is-subtree ′ pt h tmp pte ∧
tmp pte = ϕ tmp tab,v,tmp level ∧
(tmp tab, w2n tmp level) ∈ table-level vN pt h ∧
pt-lookup-g tmp tab v (w2n tmp level) pt h =
pt-lookup-f σn σv σpt-h ∧
v = σv ∧ pt h = σpt-h ∧ vN = σvN ∧ v pt = σv-pt |}

*/

{
tmp level = tmp level - 1;
tmp tab = pte get next(tmp pte);

tmp pte = ptab index(tmp tab,v,tmp level);

tmp valid = pte is valid(tmp pte);

tmp subtree = pte is subtree(tmp pte);

}
r5 = (tmp pte, tmp level);
{|r5 = pt-lookup-f σn σv σpt-h ∧ R (pt h, vN) = R (σpt-h, σvN) ∧
wfpt (pt h, v pt, vN)|}

Fig. 15. Page table lookup code

While quite low-level, this is in fact an abstraction of actual page table imple-
mentations. In reality, multiple page levels in this model may consist of a single
page level at the hardware level, where duplication is used to achieve superpages.
Also, PTEs are bitfields and link nodes are stored at a fixed, level dependent,
offset from the PTE. Procedures such as pte get next and pte is subtree

93

procedures pt-insert(n,v ,l |r6) =
{|σ. n ∈ vN ∧ w2n l ≤ pt-top-level ′ ∧ wfpt (pt h, v pt, vN)|}
tmp level = pt-top-level;
tmp tab = n;

tmp pte = ptab index(tmp tab,v,tmp level);

tmp valid = pte is valid(tmp pte);

tmp subtree = pte is subtree(tmp pte);

while (!(tmp level == l) && (tmp subtree || !tmp valid))
/* INV: {|w2n tmp level ≤ pt-top-level ′ ∧ wfpt (σpt-h, σv-pt , σvN) ∧ v = σv ∧

tmp subtree = pte-is-subtree ′ pt h tmp pte ∧ vN = σvN ∧ σn ∈ vN ∧
tmp valid = pte-is-valid ′ pt h tmp pte ∧ wfpt (pt h, v pt, vN) ∧
¬ w2n tmp level < w2n l ∧
(tmp tab, w2n tmp level) ∈ table-level vN pt h ∧
tmp pte = ϕ tmp tab,v,tmp level ∧
pt-lookup-g tmp tab v (w2n tmp level) pt h =
pt-lookup-f σn σv pt h ∧
l = σ l ∧ R (pt h, vN) = R (σpt-h, σvN) ∧
(∀ x l . if pt-lookup-f σn σv σpt-h = (x , l) ∧ w2n tmp level ≤ w2n l

then ∃ y . pt-lookup-g tmp tab v (w2n tmp level) pt h =
(y , tmp level)

else pt h = σpt-h ∧ v pt = σv-pt)|}
*/

{
tmp level = tmp level - 1;
if (!tmp valid) {

pte make subtree(tmp level,tmp pte);

}
tmp tab = pte get next(tmp pte);

tmp pte = ptab index(tmp tab,v,tmp level);

tmp subtree = pte is subtree(tmp pte);

tmp valid = pte is valid(tmp pte);

}
if (!tmp subtree) {
if (!tmp valid) {

pte make leaf(tmp pte);

}
r6 = b(tmp pte, tmp level)c;

} else {
r6 = None;

}
{|r6 = pt-inserta-out σn σv σ l (R (pt h, vN)) ∧
R (pt h, vN) ∈ pt-inserta

σn σv σ l (R (σpt-h, σvN)) ∧ wfpt (pt h, v pt, vN)|}

Fig. 16. Page table insertion code

94

constitute the underlying ADT, of which concrete models should correspond to
architecture-specific implementations of page tables.

4.3 Refinement

We can define an ADT for the operations in the above model and show refinement
using the abstraction relation r. pt-lookup-f is a functional implementation of
page table lookup as described in the previous section.

pt-lookup-g n v l pt-h =
(let p = ϕ n,v ,n2w l
in case ψ pt-h p of

Next n ′ ⇒ if l 6= 0 then pt-lookup-g n ′ v (l − 1) pt-h else (p, w-0)
| - ⇒ (p, n2w l))

pt-lookup-f n v pt-h ≡ pt-lookup-g n v pt-top-level ′ pt-h

The function R maps from concrete page tables to the abstract page table
function. This hides the type of nodes other than Leaf by returning None if the
pointer returned by page table lookup does not reference a Leaf.

R c ≡
let (pt-h, N) = c
in λ(n, v).

if n /∈ N then None
else let (p, l) = pt-lookup-f n v pt-h

in if ψ pt-h p 6= Invalid then b(p, l)c else None

The same set of valid address spaces should be in both concrete and abstract
models. Valid Leaf PTE s appear at the same location in the abstract heap.

r ≡
{(a, c) | set (N a) = vN- ′ c ∧
(∀ p. case ψ pt-h- ′ c p of

Leaf pte ⇒ pt-h- ′ c,v-pt- ′ c ` p −→ Heap a p = pte | - ⇒ True) ∧
PageTable a = R (pt-h- ′ c, vN- ′ c)}

The conditions in the Hoare triple specifications for the source code ensure
that well-formedness holds and is preserved, that the abstraction relation holds
on the concrete and abstract states pre- and post-operation, and that the ex-
pected values are returned. Using the soundness result of the Hoare logic [16], we
get that the concrete implementations on the semantic level correctly simulate
the abstract model of page tables.

5 Conclusion

We have presented some important aspects of the refinement process in verifying
the virtual memory subsystem of the L4 microkernel. We have shown an abstract
model of address spaces together with the operations on them that the kernel
API offers. We have taken the memory lookup operation of this model, and

95

described its implementation in the kernel using a page table data structure. We
have further refined this abstract view of the page table data structure towards
an implementation in the C programming language.

While we have not yet completely reached the level of C source code as it is
accepted by standard C compilers, it is already apparent that this final step is
within reach.

Further work in this direction includes enhancements to the Hoare-logic veri-
fication environment, such as the ability to directly use concrete C-syntax within
Isabelle, as well as using this verified implementation of page tables as a drop-in
replacement for the current L4Ka::Pistachio implementation. Our final goal is a
verified, high performance implementation of L4. Since our verified implementa-
tion is very close in terms of code and data structures being used to the existing
one, we do not expect any decrease in performance.

Acknowledgements We thank Espen Skoglund for providing a clean and generic
interface of the page table data structure in L4Ka::Pistachio that was nicely
amenable to verification.

References

1. ARM Limited. ARM Architecture Reference Manual, Jun 2000.
2. William R. Bevier. Kit: A study in operating system verification. IEEE Transac-

tions on Software Engineering, 15(11):1382–1396, 1989.
3. William R. Bevier and Lawrence M. Smith. A mathematical model of the Mach

kernel. Technical Report 102, Computational Logic, Inc., Dec 1994.
4. Thierry Cattel. Modelization and verification of a multiprocessor realtime OS

kernel. In Proceedings of FORTE ’94, Bern, Switzerland, October 1994.
5. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented

Proof Methods and their Comparison. Number 47 in Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1998.

6. Gregory Duval and Jacques Julliand. Modelling and verification of the RUBIS
µ-kernel with SPIN. In SPIN95 Workshop Proceedings, 1995.

7. Michael Hohmuth, Hendrik Tews, and Shane G. Stephens. Applying source-code
verification to a microkernel — the VFiasco project. Technical Report TUD-FI02-
03-März, TU Dresden, 2002.

8. Jerry Huck and Jim Hays. Architectural support for translation table management
in large address space machines. In Proc. 20th ISCA, pages 39–50. ACM, 1993.

9. Gerwin Klein and Harvey Tuch. Towards verified virtual memory in L4. In
TPHOLS’04 emerging trends, Park City, Utah, Sep 2004.

10. L4 eXperimental Kernel Reference Manual Version X.2, 2004.
11. L4Ka Team. L4Ka::Pistachio kernel. http://l4ka.org/projects/pistachio/.
12. Jochen Liedtke. On µ-kernel construction. In Proc. 15th SOSP, pages 237–250,

Copper Mountain, CO, USA, Dec 1995.
13. Jochen Liedtke. On the Realization Of Huge Sparsely-Occupied and Fine-Grained

Address Spaces. Oldenbourg, Munich, Germany, 1996.
14. Wolfgang Naraschewski and Markus Wenzel. Object-oriented verification based

on record subtyping in higher-order logic. In Jim Grundy and Malcom Newey,
editors, Proc. Theorem Proving in Higher Order Logics: TPHOLs ’98, volume 1479
of Lecture Notes in Computer Science. Springer-Verlag, 1998.

96

http://l4ka.org/projects/pistachio/

15. P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt, and L. Robinson. A prov-
ably secure operating system: The system, its applications, and proofs. Technical
Report CSL-116, Computer Science Laboratory, SRI International, 1980.

16. Norbert Schirmer. A verification environment for sequential imperative programs
in Isabelle/HOL. In Gerwin Klein, editor, Proc. NICTA workshop on OS verifica-
tion 2004, Technical Report 0401005T-1, Sydney, Australia, Oct 2004.

17. J. S. Shapiro and S. Weber. Verifying operating system security. Technical Report
MS-CIS-97-26, Distributed Systems Laboratory, University of Pennsylvania, 1997.

18. Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Patterson. Trade-
offs in supporting two page sizes. In Proc. 19th ISCA. ACM, 1992.

19. P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau, A. Chitturi, and G. Back.
Formal methods: a practical tool for OS implementors. In Proceedings of the Sixth
Workshop on Hot Topics in Operating Systems, pages 20–25, 1997.

20. Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek. Specification and
verification of the UCLA Unix security kernel. Communications of the ACM,
23(2):118–131, February 1980.

97

A Verification Environment for Sequential
Imperative Programs in Isabelle/HOL ?

Norbert Schirmer

Technische Universität München, Institut für Informatik
http://www4.in.tum.de/~schirmer

Abstract. We develop a general language model for sequential imper-
ative programs together with a Hoare logic. We instantiate the frame-
work with common programming language constructs and integrate it
into Isabelle/HOL, to gain a usable and sound verification environment.

1 Introduction

The main goal of this work is to develop a suitable programming language model
and proof calculus, to support program verification in the interactive theorem
prover Isabelle/HOL. The model should be lightweight so that program verifi-
cation can be carried out on the abstraction level of the programming language.
The design of a framework for program verification in an expressive logic like
HOL is driven by two main goals. On the one hand we want to derive the proof
calculus in HOL, so that we can guarantee soundness of the calculus with respect
to the programming language semantics. On the other hand we want to apply
the proof calculus to verify programs. During program verification we focus on
one single program for which we want to derive some properties. But for a gen-
eral soundness proof of the calculus we have to regard the whole programming
language, not just a single program. The tradeoff can be illustrated by a simple
program that only concerns two local variables: i and b of type int and bool,
respectively. It is desirable to obtain verification conditions in terms of logical
variables i and b of type int and bool in HOL. But of course we do not want
to fix the state space of the general proof calculus only to programs on these
two variables. One solution is to model local variables as a function, mapping
variable names to values: name ⇒ value. But in this model all variables are
represented by the same logical type, namely value. If the programming lan-
guage supports more than one type for variables we can define the type value
as datatype, e.g.: value = Int int | Bool bool | We tag values with their pro-
gramming language type. The drawback of this approach is that we have to
explicitely deal with programming language typing in assertions and proofs. If
for example a program adds the constant 2 to the variable i we have to know
that the current environment holds a value of the kind Int i and not Bool b to
properly reason about the addition. This knowledge has to stem from a typing

? This research is funded by the project Verisoft (http://www.verisoft.de)

http://www4.in.tum.de/~schirmer
http://www.verisoft.de

constraint. We somehow always have to deal with type safety of the programming
language during program verification.

The main contribution of this work is to present a programming language
model that operates on a polymorphic state space, but still can handle local
and global variables throughout procedure calls. By this we can achieve both
desired goals. We can once and for all develop a sound proof calculus as well
as later on tailor the state space to fit to the current program verification task.
Moreover the model is expressive enough to handle abrupt termination, runtime
faults and dynamic procedure calls. Finally we instantiate the framework with
a state space representation that allows us to match programming language
typing with logical typing. So type inference will take care of basic type safety
issues, which simplifies the assertions and proof obligations. Parts of the frame
condition for procedure specifications can be naturally expressed in this state
space representation and can already be handled during verification condition
generation.

We start with a brief introduction to Isabelle/HOL in Section 2; in Section
3 we introduce the syntax and semantics of the basic programming language
model; Section 4 describes a Hoare logic for partial correctness; Section 5 a
Hoare logic for total correctness; Section 6 will instantiate the framework with
common language features and sketch the integration into Isabelle; Section 7
concludes.

Related Work The tradition of embedding a programming language in HOL goes
back to the work of Gordon [11], where a while language with variables ranging
over natural numbers is introduced. A polymorphic state space was already
used by Harrison in his formalisation of Dijkstra [4] and by Prensa to verify
parallel programs [18]. Still procedures are not present. Homeier [5] introduces
procedures, but the variables are again limited to numbers. Later on detailed
semantics for Java [16, 6] and C [15] where embedded in a theorem prover. But
verification of even simple programs suffers from the complex models.

The Why tool [3] implements a program logics for annotated functional pro-
grams (with references) and produces verification conditions for an external the-
orem prover. It can handle uninterpreted parts of annotations that are only
meaningful to the external theorem prover. With this approach it is possible to
map imperative languages like Java to the tool by representing the heap in a
reference variable. Splitting up verification condition generation and their proofs
to different tools is also followed in [10,17].

2 Preliminary Notes on Isabelle/HOL

Isabelle is a generic logical framework which allows one to encode different object
logics. In this article we are only concerned with Isabelle/HOL [14], an encoding
of higher order logic augmented with facilities for defining data types, records,
inductive sets as well as primitive and total general recursive functions.

100

The syntax of Isabelle is reminiscent of ML, so we will not go into detail
here. There are the usual type constructors T 1 × T 2 for product and T 1 ⇒ T 2

for function space. The syntax [[P ; Q]] =⇒ R should be read as an inference
rule with the two premises P and Q and the conclusion R. Logically it is just
a shorthand for P =⇒ Q =⇒ R. There are actually two implications −→ and
=⇒. The two mean the same thing except that −→ is HOL’s ”real” implication,
whereas =⇒ comes from Isabelle’s meta-logic and expresses inference rules. Thus
=⇒ cannot appear inside a HOL formula. For the purpose of this paper the two
may be identified. Similarly, we use

∧
for the universal quantifier in the meta

logic.
To emulate partial functions the polymorphic option type is frequently used:

datatype ′a option = None | Some ′a

Here ′a is a type variable, None stands for the undefined value and Some x for
a defined value x. A partial function from type T 1 to type T 2 can be modelled
as T 1 ⇒ (T 2 option).

There is also a destructor for the constructor Some, the function the:: ′a
option ⇒ ′a. It is defined by the sole equation the (Some x) = x and is total in
the sense that the None is a legal, but indefinite value.

Appending two lists is written as xs @ ys and “consing” as x # xs.

3 Programming Language Model

3.1 Abstract Syntax

The basic model of the programming language is quite general. We want to be
able to represent a sequential imperative programming language with mutually
recursive procedures, local and global variables and heap. Abrupt termination
like break, continue, return or exceptions should also be expressible in the
model. Moreover we support a dynamic procedure call, which allows us to rep-
resent procedure pointers or dynamic method invocation.

We only fix the statements of the programming language. Expressions are or-
dinary HOL-expressions, therefore they do not have any side effects. Nevertheless
we want to be able to express faults during expression evaluation, like division by
0 or dereferencing a Null pointer. We introduce guards in the language, which
check for those runtime faults.

The state space of the programming language and also the representation of
procedure names is polymorphic. The canonical type variable for the state space
is ′s and for procedure names ′p. The programming language is defined by a
datatype (′s, ′p) com with the following constructors:

Skip: Do nothing.
Basic f : Basic commands like assignment.
Seq c1 c2: Sequential composition, also written as c1;c2.
Cond b c1 c2: Conditional statement.

101

Guard g c: Guarded command, also written as g 7→ c.
While g b c: Loop.
Call init p return result: Static procedure call.
DynCall init p return result: Dynamic procedure call.
Throw : Initiate abrupt termination.
Catch c1 c2: Handle abrupt termination.

3.2 Semantic

State Space Representation Although the semantics is defined for polymor-
phic state spaces we introduce the state space representation which we will use
later on to give some illustrative examples. We represent the state space as a
record [14, 12] in Isabelle/HOL. This idea goes back to Wenzel [19]. A simple
state space with three local variables B, N and M can be modelled with the
following record definition:

record vars = B ::bool N ::int M ::int

Records of type vars have three fields, named B, N and M of type bool resp.
int. An example instance of such a record is (|B = True, N = 42 , M = 3 |). For
each field there is a selector function of the same name, e.g. N (|B = True, N =
42 , M = 3 |) = 42. The update operation is functional. For example, v(|N := 0 |)
is a record where component N is 0 and whose B and M component are copied
from v. Selections of updated components can be simplified automatically e.g.
N (r(|N := 43 |)) = 43. The representation of the state space as record has the
advantage that the typing of variables can be expressed by means of typing in
the logic. Therefore basic type safety requirements are already ensured by type
inference.

Operational Semantics We give an operational (big step) semantics for the
programming language, written as Γ`s −c→ t. Starting in state s, execution
of command c leads to the final state t. Γ is the procedure environment, which
maps procedure names to procedure bodies. The states s and t are not just
plain state spaces of type ′s, but extended states of type ′s xstate which allow
us to identify runtime faults, stuck calculations and abrupt termination. During
normal execution such an extended state has the form Normal s, during abrupt
termination the form Abrupt s, runtime faults are captured by the (extended)
state Fault and stuck calculation by the (extended) state Stuck. The execution
relation is defined inductively.

Basic commands The command Basic f just applies the function f to the
current state. An example of a basic operation may be an assignment N = 2.
This can be represented as Basic (λs. s(|N :=2 |)) in our language model. We can
also model field assignment or memory allocation as basic commands.

Γ`Normal s −Skip→ Normal s Γ`Normal s −Basic f→ Normal (f s)

102

Composition Sequential composition combines the execution of the two com-
mands.

Γ`Normal s −c1→ s ′ Γ`s ′ −c2→ t

Γ`Normal s −Seq c1 c2→ t

Conditional The conditional statement executes the first or the second com-
mand depending on the branching condition b. We represent boolean expressions
as state sets.

s ∈ b Γ`Normal s −c1→ t

Γ`Normal s −Cond b c1 c2→ t

s /∈ b Γ`Normal s −c2→ t

Γ`Normal s −Cond b c1 c2→ t

Guards The guarded command is used to model runtime faults which may
occur during expression evaluation. The guard g is a boolean expression that
checks for possible faults in the expressions of command c and only executes
c if the test is passed. Otherwise the fault will be signalled. Once a fault has
occurred we cannot leave the error state Fault anymore.

s ∈ g
Γ`Normal s −c→ t

Γ`Normal s −Guard g c→ t

s /∈ g
Γ`Normal s −Guard g c→ Fault

Γ`Fault −c→ Fault

Loop If the guard g for the condition b fails the while loop will end up in the
state Fault. If the guard and the loop condition hold, first the loop body c is
executed, followed by the recursive execution of the while loop. If the guard
holds, but the loop condition does not, we exit the loop.

s /∈ g
Γ`Normal s −While g b c→ Fault

s ∈ g s ∈ b
Γ`Normal s −c→ s ′

Γ`s ′ −While g b c→ t

Γ`Normal s −While g b c→ t

s ∈ g s /∈ b
Γ`Normal s −While g b c→ Normal s

Abrupt termination The Throw statement transforms a Normal state to an
Abrupt state. For Abrupt states execution is skipped. A Catch c1 c2 statement
will handle an Abrupt final state of c1 by continuing execution of c2 in a Normal
state. Otherwise execution of c2 is skipped.

Γ`Normal s −Throw→ Abrupt s Γ`Abrupt s −c→ Abrupt s

Γ`Normal s −c1→ Abrupt s ′

Γ`Normal s ′ −c2→ t

Γ`Normal s −Catch c1 c2→ t

Γ`Normal s −c1→ t ¬ isAbr t
Γ`Normal s −Catch c1 c2→ t

103

isAbr (Normal s) = False
isAbr (Abrupt s) = True
isAbr Fault = False
isAbr Stuck = False

Procedure call To execute a procedure call Call init p return result we first
pass the parameters by applying init to the starting state s. Then we execute
the procedure body that is given by a lookup in the procedure environment Γ p.
If this lookup fails Γ p = None execution gets Stuck. For Stuck states execution
is skipped. If we find a procedure body in the environment the further execution
depends on the kind of state, resulting from the body:

Γ p = None

Γ`Normal s −Call init p return result→ Stuck

Γ`Stuck −c→ Stuck
Γ p = Some bdy Γ`Normal (init s) −bdy→ Fault

Γ`Normal s −Call init p return result→ Fault

Γ p = Some bdy Γ`Normal (init s) −bdy→ Stuck

Γ`Normal s −Call init p return result→ Stuck

Γ p = Some bdy Γ`Normal (init s) −bdy→ Normal t

Γ`Normal s −Call init p return result→ Normal (result s t)

Γ p = Some bdy Γ`Normal (init s) −bdy→ Abrupt t

Γ`Normal s −Call init p return result→ Abrupt (return s t)

If execution of the body fails or gets stuck, the whole call fails or gets stuck. If
execution of the body ends up in a Normal state t, the outcome of the call is
given by result s t. If execution of the body ends up in an Abrupt state t, the
outcome of the call is given by return s t. The function return passes back the
global variables (and heap components), and result additionally assigns results
to local variables of the caller.

The return/result functions get both the initial state s before the procedure
call and the final state t after execution of the body. It is the purpose of return to
restore the local variables of the caller and update the global variables. The result
function will additionally assign the result to the caller. If the body terminates
abruptly we apply the return function, thus the global state will be propagated
to the caller but no result will be assigned. This is the expected semantics of an
exception. Note that we can also store a description of the raised exception in a
global variable so that a Catch can peek at it, to decide whether to handle the
exception or to re-raise it.

As an example for a procedure call, consider a function definition int fac(int
n) and a call to this function m = fac(m). When we do not regard global vari-
ables, we can model this call by: Call (λs. s(|N := M s|)) fac (λs t . s) (λs t .
s(|M := N t |)). The state space of the programming language is flat. We do not
explicitly model a stack. Locality of variables and parameters is maintained by
the return and result functions. The body of fac expects the input to be stored

104

in the formal parameter N. But we call the function with the actual parameter
M. So the init function λs. s(|N := M s|) copies the content of M to component
N. The trivial return function λs t . s gives back the initial state. State s is the
initial state of the caller, and t is the state after executing the body. By this
all local variables of the caller are restored. Consider that the body of fac in-
ternally holds the result of the factorial calculation in its local variable N. Then
the result function has to copy the content of N to component M because of
the assignment m = fac(m). This is implemented by the result function λs t .
s(|M := N t |). The result function just takes the initial state and performs the
necessary update by peeking on the actual state. These ideas can be extended
to global variables. Consider B to be a global variable. We just have to adapt
the return/result function, so that they will copy B back to the caller: return =
(λs t . s(|B := B t |)), result = (λs t . s(|B := B t , M := N t |)).

In contrast to the static procedure call, a dynamic procedure call first calcu-
lates the procedure from the actual state. The rest is handled by the ordinary
procedure call rules.

Γ`Normal s −Call init (p s) return result→ t

Γ`Normal s −DynCall init p return result→ t

Termination To characterise terminating programs we introduce the induc-
tively defined judgement Γ`c ↓ s expressing that in procedure environment Γ
program c will terminate when it is started in state s. The rules should be
self-explanatory:

Basic commands
Γ`Skip ↓ Normal s Γ`Basic f ↓ Normal s

Composition
Γ`c1 ↓ Normal s ∀ s ′. Γ`Normal s −c1→ s ′ −→ Γ`c2 ↓ s ′

Γ`Seq c1 c2 ↓ Normal s

Conditional
s ∈ b Γ`c1 ↓ Normal s
Γ`Cond b c1 c2 ↓ Normal s

s /∈ b Γ`c2 ↓ Normal s
Γ`Cond b c1 c2 ↓ Normal s

Guards
s ∈ g Γ`c ↓ Normal s
Γ`Guard g c ↓ Normal s

s /∈ g
Γ`Guard g c ↓ Normal s

Γ`c ↓ Fault

Loop
s /∈ g

Γ`While g b c ↓ Normal s
s ∈ g s /∈ b

Γ`While g b c ↓ Normal s
s ∈ g s ∈ b

Γ`c ↓ Normal s ∀ s ′. Γ`Normal s −c→ s ′ −→ Γ`While g b c ↓ s ′

Γ`While g b c ↓ Normal s

105

Abrupt termination
Γ`Throw ↓ Normal s Γ`c ↓ Abrupt s

Γ`c1 ↓ Normal s
∀ s ′. Γ`Normal s −c1→ Abrupt s ′ −→ Γ`c2 ↓ Normal s ′

Γ`Catch c1 c2 ↓ Normal s

Procedure call
Γ p = Some bdy Γ`bdy ↓ Normal (init s)

Γ`Call init p return result ↓ Normal s
Γ p = None

Γ`Call init p return result ↓ Normal s
Γ`c ↓ Stuck

Γ`Call init (p s) return result ↓ Normal s
Γ`DynCall init p return result ↓ Normal s

4 Hoare Logic for Partial Correctness

The first question concerning a Hoare logic is how to represent the assertions.
The model of the imperative programming language is quite general. The state
space is polymorphic. So the variables and their types are not fixed until we
regard a program to verify. Therefore the assertion language is not fixed either.
An assertion on states of type ′s is a set of states: ′s set.

We first define a Hoare logic for partial correctness. The judgement is of
the general form Γ ,Θ`P c Q ,A where P is the precondition, c the program,
Q the postcondition for normal termination, A the postcondition for abrupt
termination, Γ the procedure environment and Θ is a set of Hoare quadruples
that we may assume. Θ is used to handle recursive procedures as we will see
later on. The approach to split up the postcondition for normal and abrupt
termination is also followed by [3,7].

The semantics of these judgements is given by the notion of validity:

Γ |= P c Q ,A ≡
∀ s t . Γ`s −c→ t −→ s ∈ Normal ‘ P −→ t ∈ Normal ‘ Q ∪ Abrupt ‘ A

Given an execution of command c which takes us from the starting state s to the
final state t, if s is a Normal state for which the precondition P holds, then the
final state t will either be a Normal state for which the postcondition Q holds, or
an Abrupt state for which postcondition A holds. The Fault and Stuck states are
no valid outcomes. This extends the traditional partial correctness interpretation
to abrupt termination and the additional constraint that no runtime fault may
occur. The assertions P, Q and A are of type ′s set, whereas s and t are of type
′s xstate. We do not have to deal with the extended state in assertions, which
makes them easier. The operator ‘ is the set image (like map for lists). So s ∈
Normal ‘ P can be rephrased by the set comprehension {Normal s. s ∈ P}.

When designing the Hoare logic we should always keep soundness and com-
pleteness in mind, which we have both proven:

106

– theorem soundness: Γ ,{}`P c Q ,A −→ Γ |= P c Q ,A
We can only derive valid Hoare quadruples out of the empty context.

– theorem completeness: Γ |= P c Q ,A −→ Γ ,{}`P c Q ,A
We can derive every valid Hoare quadruple out of the empty context.

The Hoare logic is defined inductively. The rules are syntax directed, and
most of them are defined in a weakest precondition style. This makes it easy to
automate rule application in a verification condition generator. Handling abrupt
termination is surprisingly simple. The postcondition for abrupt termination is
left unmodified by most of the rules. Only if we actually encounter a Throw it
has to be a consequence of the precondition. This means that the proof rules
do not complicate the verification of programs where abrupt termination is not
present.

Basic Commands The rule for Basic f commands is a variation of the classical
assignment rule. If the postcondition is Q, then the precondition is the set of all
states that will lead into Q after applying f.

Γ ,Θ`Q Skip Q ,A Γ ,Θ`{s. f s ∈ Q} Basic f Q ,A

Composition and Conditional The rule for sequential composition and the
conditional are almost standard. In case of sequential composition the postcon-
dition for abrupt termination has to hold in either statement independently, in
contrast to the intermediate assertion R for normal termination. This is simply
because in case of abrupt termination of the first statement the second one will
be skipped.

Γ ,Θ`P c1 R,A Γ ,Θ`R c2 Q,A

Γ ,Θ`P Seq c1 c2 Q,A

Γ ,Θ`(P ∩ b) c1 Q,A
Γ ,Θ`(P ∩ − b) c2 Q,A

Γ ,Θ`P Cond b c1 c2 Q,A

Guards To prove a guarded command correct, we have to show that both the
precondition P of the statement c and the guard g hold. This ensures that no
runtime fault occurs.

Γ ,Θ`P c Q,A

Γ ,Θ`(g ∩ P) Guard g c Q,A

Loop The rule for the while loop is also almost the traditional invariant rule.
But we also have to ensure that the guard g for the conditional b always holds.
Otherwise a runtime fault could occur. The verification condition generator will
use a derived rule which takes an invariant annotation into account.

Γ ,Θ`(g ∩ P ∩ b) c (g ∩ P),A
Γ ,Θ`(g ∩ P) While g b c (g ∩ P ∩ − b),A

107

Abrupt Termination In case of a Throw the abrupt postcondition has to stem
from the precondition. The rule for Catch is dual to sequential composition.
Here the postcondition for normal termination can be derived independently.
The intermediate assertion R is the precondition for the second statement and
the postcondition for abrupt termination of the first statement.

Γ ,Θ`A Throw Q ,A
Γ ,Θ`P c1 Q,R Γ ,Θ`R c2 Q,A

Γ ,Θ`P Catch c1 c2 Q,A

Consequence We have a quite general form of the consequence rule. The tra-
ditional rules like precondition strengthening or postcondition weakening can
easily be derived from it.

∀Z. Γ ,Θ`(P ′ Z) c (Q ′ Z),(A ′ Z)
∀ s. s ∈ P −→ (∃Z. s ∈ P ′ Z ∧ Q ′ Z ⊆ Q ∧ A ′ Z ⊆ A)

Γ ,Θ`P c Q,A

The consequence rule can be used to adapt a given specification Γ ,Θ`(P ′ Z) c
(Q ′ Z),(A ′ Z) about command c to Γ ,Θ`P c Q ,A. The auxiliary variable Z can
be used to transport state information from the pre state to the post state. This
is a crucial tool to deal with procedure specifications, where the postcondition
is defined by means of the pre state. For completeness issues it is sufficient that
Z has the type ′s of the state space. Z can be used to fix the pre-state logically.
That is why the given specification must be valid for all Z and the side-condition
allows us to select a specific Z dependent on the current state s. A more detailed
discussion of consequence rules and auxiliary variables can be found in [8,13,16].

Procedure Call If we encounter a procedure call during verification condition
generation, like Γ ,Θ`P Call init p return result Q ,A, we do not look inside the
procedure body, but instead use a specification Γ ,Θ`(P ′ Z) Call ini p ret res
(Q ′ Z),(A ′ Z) of the procedure. We then adapt the specification to the actual
calling context mainly by a variant of the consequence rule, where we also take
parameter and result passing into account.

∀Z . Γ ,Θ`(P ′ Z) Call ini p ret res (Q ′ Z),(A ′ Z)
∀ s. ini (init s) = init s

P ⊆ {s. (∃Z . init s ∈ P ′ Z ∧
(∀ t . res (init s) t ∈ Q ′ Z −→ result s t ∈ Q) ∧
(∀ t . ret (init s) t ∈ A ′ Z −→ return s t ∈ A))}

Γ ,Θ`P Call init p return result Q ,A

The central idea of this rule is to simulate the actual call Call init p return
result in state s, with a call of the specification Call ini p ret res in state init
s. The following figure shows the sequence of intermediate states for normal
termination of both executions. On the top the actual call, on the bottom the
call of the specification:

108

Γ ps

Γ p v

ut

t

ini

∈

Q

Call ini p ret res

res i

−→

∈∈

P ′ Z

∈

P

∈

i

i

Q ′ Z

init

−→

result s

Call init p return result

We start in state s for which the precondition P holds. To be able to make use
of the procedure specification we have to find a suitable instance of the auxiliary
variable Z so that the precondition of the specification holds: init s ∈ P ′ Z. Let t
be the state immediately after execution of the procedure body, before returning
to the caller and passing results. We know from the procedure specification that
when exiting the procedure according to res the postcondition will hold: res (init
s) t ∈ Q ′ Z. From this we have to conclude that exiting the procedure according
to the actual function result will lead us to a state in Q. For abrupt termination
the analogous simulation idea applies.

The side-condition ∀ s. ini (init s) = init s is no real burden. A procedure
specification will be given with the canonical procedure parameters, according
to the procedure declaration. So ini will be the identity. Also in actual program
verification the formal procedure exit protocol defined by ret and res and the
actual protocol return and result will be closely related to each other. Just
because these protocols are modelled so generically here it might seem tedious
at first sight. But ret and return will both copy back global variables to the
caller (so they will actually be the same), and res will just store the result
of the procedure at the formal result parameter in the callers local variables,
whereas result will store it to the actual one. In the record implementation, the
verification condition generator can use simplification of the record updates and
selections encoded in the functions and the assertions, to achieve the expected
adaption of the specification to the actual calling context.

Procedure Implementation To verify a procedure implementation against its
specification we also need a rule that descends into the procedure body. The
Hoare logic can deal with (mutually) recursive procedures. The basic idea of
a Hoare rule for recursive procedures is simple. We prove that the procedure
body respects the specification, under the assumption that recursive calls to the
procedure will meet the specification. To model this assumption the context Θ
comes in. If a procedure specification is in this context, we can immediately
derive this specification within the Hoare logic.

109

(P , c, Q, A) ∈ Θ
Γ,Θ`P c Q,A

To handle a set Procs of mutually recursive procedures we enrich the context
by all the procedure specifications, while we prove their bodies.

Θ ′=Θ ∪ (
⋃

p∈Procs.⋃
Z .{(P p Z ,Call (Init p) p (Ret p) (Res p),Q p Z ,A p Z)})
∀ p∈Procs. ∀Z . Γ ,Θ ′̀ (P p Z) the (Γ p) (Q ′ p Z),(A ′ p Z)

∀ p∈Procs. ∀Z s t . s ∈ P p Z −→
(t ∈ Q ′ p Z −→ Res p s t ∈ Q p Z) ∧ (t ∈ A ′ p Z −→ Ret p s t ∈ A p Z)

∀ p∈Procs. Init p = (λs. s) Procs ⊆ dom Γ

∀Z . ∀ p∈Procs. Γ ,Θ`(P p Z) Call (Init p) p (Ret p) (Res p) (Q p Z),(A p Z)

Since we deal with the set Procs of procedures we also have to give the pre-
and postconditions and the parameter and return/result passing protocols for
all these procedures. We use the functions P, Q, A, Init, Ret and Res which
map procedure names to the desired entities. Z plays the role of an auxiliary (or
logical) variable. It usually fixes (parts of) the pre state, so that we can refer to
it in the post state. In the Hoare rule for procedure specifications, which we have
described before, we had the freedom to pick a particular Z so that s ∈ P −→
init s ∈ P ′ Z holds. Since we have the freedom there, we now have to prove the
procedure bodies for all possible Z. Think of Z as the pre state. We prove that
the specification holds for all pre states (that satisfy the precondition). When we
later on use the specification to prove a procedure call we instantiate Z to the
actual state to adapt the specification to the current calling context. Whereas
the postconditions for the procedures are given by Q p Z and A p Z we prove
different postconditions for the procedure bodies, namely Q ′ p Z and A ′ p Z.
This stems from the fact that the final state of a procedure body is not the
final state of the corresponding procedure call, since exiting the procedure lies
in-between them. We take the intermediate assertions Q ′ p Z and A ′ p Z to
describe the final state of the procedure body. The big side-condition then links
Q ′ p Z and Q p Z or A ′ p Z and A p Z together. It is worth noticing that
in most cases Q ′ and Q or A ′ and A will actually be the same, since a proper
postcondition will only talk about global variables or result variables of the final
state and their relation to the initial state and not about local variables. Keep
in mind that we verify a procedure specification here. So the init functions will
not pass any parameters (Init p = (λs. s)), and the return/result functions will
only assign to global variables or formal result parameters. So global variables
and result variables at the end of the procedure body will be the same as after
exiting the procedure. Finally, with Procs ⊆ dom Γ , we make sure that the
calculation will not get stuck.

Dynamic Procedure Call The rule for dynamic procedure call is a slight
generalisation of the rule for static procedure call. Since the selected procedure

110

depends on the state, we have the liberty to select a suitable specification de-
pendent on the state.

∀ s∈P . ∀Z . Γ ,Θ`(P ′ s Z) Call ini (p s) ret res (Q ′ s Z),(A ′ s Z)
∀ s. ini (init s) = init s

P ⊆ {s. (∃Z . init s ∈ P ′ s Z ∧
(∀ t . res (init s) t ∈ Q ′ s Z −→ result s t ∈ Q) ∧
(∀ t . ret (init s) t ∈ A ′ s Z −→ return s t ∈ A))}

Γ ,Θ`P DynCall init p return result Q ,A

5 Hoare Logic for Total Correctness

The Hoare logic for total correctness ensures both partial correctness and ter-
mination. The judgement is written as Γ ,Θ`tP c Q ,A. The intended semantics
of this judgement is described by the notion of validity.

Γ |=t P c Q ,A ≡ Γ |= P c Q ,A ∧ (∀ s∈Normal ‘ P . Γ`c ↓ s)

Validity for total correctness directly captures the informal description given
above. The quadruple must be valid in the sense of partial correctness, and the
program c has to terminate for all Normal states that satisfy the precondition
P.

Again we have proven both soundness and completeness of the Hoare logic.

– theorem soundness: Γ ,{}`tP c Q ,A −→ Γ |=t P c Q ,A
We can only derive valid Hoare quadruples out of the empty context.

– theorem completeness: Γ |=t P c Q ,A −→ Γ ,{}`tP c Q ,A
We can derive every valid Hoare quadruple out of the empty context.

Most of the Hoare logic rules for total correctness are structurally equivalent
to their partial correctness counterparts. We will only focus on those interesting
rules with an impact on termination, namely loops and recursion. The basic idea
is to justify termination by a well-founded relation on the state space.

Loop We have to supply a well-founded relation r on the state space, which
decreases by evaluation of the loop body. Formally this is expressed by first
fixing the pre-state with the singleton set {τ}. In the postcondition for Normal
termination of the loop body we end up in a state s and have to show that
this state is “smaller” as τ according to the relation: (s, τ) ∈ r. For Abrupt
termination we do not have to take any care, since it will exit the loop anyway.

wf r ∀ τ . Γ ,Θ`t({τ} ∩ g ∩ P ∩ b) c ({s. (s, τ) ∈ r} ∩ g ∩ P),A
Γ ,Θ`t(g ∩ P) While g b c (g ∩ P ∩ − b),A

111

Procedure Implementation In contrast to partial correctness we now only
assume “smaller” recursive procedure calls correct while verifying the procedure
bodies. Here “smaller” again is in the sense of a well-founded relation r. To be
able to handle mutually recursive procedures the relation r not only relates state
spaces but also takes the procedure names into account. We fix the pre-state of
the procedure p with the singleton set {τ}. For every call to a procedure q in a
state s which is “smaller” than the initial call of p in state τ according to the
relation (((s,q),(τ ,p)) ∈ r), we can safely assume the specification of q while
verifying the body of p.

wf r
Θ ′=λτ. Θ ∪ (

⋃
q∈Procs.

⋃
Z .

{(P q Z ∩ {s. ((s,q),(τ ,p)) ∈ r},Call (Init q) q (Ret q) (Res q),Q q Z ,A q Z)})
∀ p∈Procs. ∀ τ Z . Γ ,Θ ′ τ`t({τ} ∩ P p Z) the (Γ p) (Q ′ p Z),(A ′ p Z)

∀ p∈Procs. ∀Z s t . s ∈ P p Z −→
(t ∈ Q ′ p Z −→ Res p s t ∈ Q p Z) ∧ (t ∈ A ′ p Z −→ Ret p s t ∈ A p Z)

∀ p∈Procs. Init p = (λs. s) Procs ⊆ dom Γ

∀Z . ∀ p∈Procs. Γ ,Θ`t(P p Z) Call (Init p) p (Res p) (Ret p) (Q p Z),(A p Z)

6 Utilising the Framework

In this section we will sketch the integration of the Hoare logics in Isabelle/HOL
and how we can express and deal with typical programming language constructs
in our framework. Our purpose is to give an impression of how program verifica-
tion “feels” like in our verification environment. The main tool is a verification
condition generator that is implemented as tactic called vcg. The Hoare logic
rules are defined in a weakest precondition style, so that we can almost take
them as they are. We derive variants of the Hoare rules where all assertions in
the conclusions are plain variables so that they are applicable to every context.

We get the following format:
P ⊆ WP . . .

Γ ,Θ`P c Q ,A
. The . . . may be recursive Hoare

quadruples or side-conditions which somehow lead to the weakest precondition
WP. If we recursively apply rules of this format until the program c is completely
processed, then we have calculated the weakest precondition WP and are left
with the verification condition P ⊆ WP. The set inclusion is then transformed
to an implication. Then we can split the state records so that the record repre-
sentation will not show up in the resulting verification condition. This leads to
quite comprehensible proof obligations that closely resemble the specifications.
Moreover we supply some concrete syntax for programs. The mapping to the ab-
stract syntax should be obvious. As a shorthand an empty set Θ can be omitted
and writing a Hoare triple instead of the quadruples is an abbreviation for an
empty postcondition for abrupt termination.

112

Basics If we refer to components (variables) of the state-space of the program
we always mark these with ´(in assertions and also in the program itself). As-
sertions are ordinary Isabelle/HOL sets. As we usually want to refer to the state
space in the assertions, we provide special brackets {|. . .|} for them. Internally,
an assertion of the from {| Í ≤ 3 |} gets expanded to {s. I s ≤ 3} in ordinary set
comprehension notation of Isabelle.

Although our assertions work semantically on the state space, stepping through
verification condition generation “feels” like the expected syntactic substitutions
of traditional Hoare logic. This is achieved by light simplification on the asser-
tions calculated by the Hoare rules.

lemma Γ` {| Ḿ = a ∧ Ń = b|}
Í := Ḿ ; Ḿ := Ń ; Ń := Í
{| Ḿ = b ∧ Ń = a|}
apply vcg-step

1 . Γ`{| Ḿ = a ∧ Ń = b|} Í := Ḿ ; Ḿ := Ń {| Ḿ = b ∧ Í = a|}

apply vcg-step

1 . Γ`{| Ḿ = a ∧ Ń = b|} Í := Ḿ {| Ń = b ∧ Í = a|}

apply vcg-step

1 . {| Ḿ = a ∧ Ń = b|} ⊆ {| Ń = b ∧ Ḿ = a|}

apply vcg-step

1 .
∧

M N . N = N ∧ M = M

by simp

Loops The following example calculates multiplication by an iterated addition.
The user annotates the loop with an invariant.

lemma Γ` {| Ḿ = 0 ∧ Ś = 0 |}
WHILE Ḿ 6= a INV {| Ś = Ḿ ∗ b|}
DO Ś := Ś + b; Ḿ := Ḿ + 1 OD
{| Ś = a ∗ b|}
apply vcg

1 .
∧

M S . [[M = 0 ; S = 0]] =⇒ S = M ∗ b
2 .

∧
M S . [[S = M ∗ b; M 6= a]] =⇒ S + b = (M + 1) ∗ b

3 .
∧

M S . [[S = M ∗ b; ¬ M 6= a]] =⇒ S = a ∗ b

The verification condition generator gives us three proof obligations, stemming
from the path from the precondition to the invariant, from the invariant together
with the loop condition through the loop body to the invariant, and finally from
the invariant together with the negated loop condition to the postcondition.

113

For total correctness the user also has to supply the variant, which in our case
is a well-founded relation. We make use of the infrastructure for well-founded
recursion that is already present in Isabelle/HOL [14]. In the example the dis-
tance of the loop variable M to a decreases in every iteration. This is expressed
by the measure function a − Ḿ on the state-space.

lemma Γ`t {| Ḿ = 0 ∧ Ś = 0 |}
WHILE Ḿ 6= a INV{| Ś = Ḿ ∗ b ∧ Ḿ ≤ a|} VAR MEASURE a − Ḿ
DO Ś := Ś + b; Ḿ := Ḿ + 1 OD
{| Ś = a ∗ b|}
apply vcg

1 .
∧

M S . [[M = 0 ; S = 0]] =⇒ S = M ∗ b ∧ M ≤ a
2 .

∧
M S . [[S = M ∗ b; M ≤ a; M 6= a]]

=⇒ a − (M + 1) < a − M ∧ S + b = (M + 1) ∗ b ∧ M + 1 ≤ a
3 .

∧
M S . [[S = M ∗ b; M ≤ a; ¬ M 6= a]] =⇒ S = a ∗ b

The variant annotation results in the proof obligation a − (M + 1) < a − M
after verification condition generation.

Abrupt Termination We can implement breaking out of a loop by a THROW
inside the loop body and enclosing the loop into a TRY−CATCH block.

lemma Γ` {| Í ≤ 3 |}
TRY WHILE True INV {| Í≤ 10 |}

DO IF Í < 10 THEN Í := Í + 1 ELSE THROW FI OD
CATCH SKIP YRT
{| Í = 10 |},{}
apply vcg

1 .
∧

I . I ≤ 3 =⇒ I ≤ 10
2 .

∧
I . [[I ≤ 10 ; True]]

=⇒ (I < 10 −→ I + 1 ≤ 10) ∧ (¬ I < 10 −→ I = 10)
3 .

∧
I . [[I ≤ 10 ; ¬ True]] =⇒ I = 10

The first subgoal stems from the path from the precondition to the invariant.
The second one from the loop body. We can assume the invariant and the loop
condition and have to show that the invariant is preserved when we execute
the THEN branch, and that the ELSE branch will imply the assertion for
abrupt termination, which will be {| Í = 10 |} according to the rule for Catch.
The third subgoal expresses that normal termination of the while loop has to
imply the postcondition. But the loop will never terminate normally and so the
third subgoal will trivially hold. All subgoals are quite simple and can be proven
automatically.

114

To model a continue we can use the same idea and put a TRY−CATCH
around the loop body. Or for return we can put the procedure body into a
TRY−CATCH. To distinguish the kind of abrupt termination we can add
a ghost variable Abr to the state space and store this information before the
THROW. For example break can be translated to Ábr := ′′Break ′′; THROW,
and the matching CATCH will peek for this variable to decide whether it is
responsible or not: IF Ábr = ′′Break ′′ THEN SKIP ELSE THROW FI.
This idea can immediately be extended to exceptions. We just have to make sure
to use a global variable to store the kind of exception, so that it will properly
pass procedure boundaries.

Procedures We provide the command procedures, to declare, define and spec-
ify a procedure.

procedures Fac (N |R) =
IF Ń = 0 THEN Ŕ := 1
ELSE Ŕ := CALL Fac(Ń − 1); Ŕ := Ń ∗ Ŕ
FI

Fac-spec: ∀n. Γ`{| Ń = n|} Ŕ := CALL Fac(Ń) {| Ŕ = fac n|}

A procedure is given by the signature of the procedure followed by the procedure
body and named specifications. The signature consists of the name of the pro-
cedure and a list of parameters. The parameters in front of the pipe | are value
parameters and behind the pipe are the result parameters. Value parameters
model call by value semantics. The value of a result parameter at the end of the
procedure is passed back to the caller.

The procedure specifications are ordinary Hoare quadruples. The precondi-
tion here fixes the current value Ń to the logical variable n. Universal quantifi-
cation of n enables us to adapt the specification to an actual parameter. The
specification will be used in the rule for procedure call when we come upon a
call to Fac. Thus n plays the role of the auxiliary variable Z.

The procedures command provides convenient syntax for procedure calls
(that creates the proper init, return and result functions on the fly), defines a
constant for the procedure body (named Fac-body) and creates two locales. The
purpose of locales is to set up logical contexts to support modular reasoning [1].

One locale is named like the specification, in our case Fac-spec. This locale
contains the procedure specification. The second locale is named Fac-impl and
contains the assumption Γ ′′Fac ′′ = Some Fac-body, which expresses that the
procedure is defined in the current context. The purpose of these locales is to
give us easy means to setup the context in which we will prove programs correct.

By including the locale Fac-spec, the following lemma assumes that the spec-
ification of the factorial holds. The vcg will make use the specification to handle
the procedure call. The lemma also illustrates locality of I.

lemma includes Fac-spec shows
Γ` {| Ḿ = 3 ∧ Í = 2 |} Ŕ := CALL Fac (Ḿ) {| Ŕ = 6 ∧ Í = 2 |}

115

apply vcg

1 .
∧

I M . [[M = 3 ; I = 2]] =⇒ fac M = 6 ∧ I = 2

To verify the procedure body we use the rule for recursive procedures. We
extend the context with the procedure specification. In this extended context
the specification will hold by the assumption rule. We then verify the procedure
body by using vcg, which will use the assumption to handle the recursive call.

lemma includes Fac-impl shows
∀n. Γ`{| Ń = n|} CALL Fac(Ń , Ŕ) {| Ŕ = fac n|}
apply (hoare-rule CallRec1-SamePost)

1 . ∀n. Γ ,(
⋃

n {({| Ń = n|}, Ŕ := CALL Fac(Ń), {| Ŕ = fac n|}, {})})
`{| Ń = n|}
IF Ń = 0 THEN Ŕ := 1
ELSE Ŕ := CALL Fac(Ń − 1); Ŕ := Ń ∗ Ŕ FI
{| Ŕ = fac n|}

apply vcg

1 .
∧

N . (N = 0 −→ 1 = fac N) ∧ (N 6= 0 −→ N ∗ fac (N − 1) = fac N)

The rule CallRec1-SamePost is a specialised version of the general rule for recur-
sion, tailored for one (mutual recursive) procedure, and where the intermediate
assertions for the procedure body and the actual postcondition are the same. The
method hoare-rule applies a single rule and solves the canonical side-conditions
concerning the parameter passing and returning protocols. Moreover it expands
the procedure body.

For total correctness the user supplies a well-founded relation. For the facto-
rial the input parameter N decreases in the recursive call. This is expressed by
the measure function λ(s,p). sN. The relation can depend on both the state-space
s and the procedure name p. The latter is useful to handle mutual recursion.
The prefix superscript in sN is a shorthand for record selection N s and is used
to refer to state components of a named state.

lemma includes Fac-impl shows
∀n. Γ`t {| Ń = n|} Ŕ := CALL Fac(Ń) {| Ŕ = fac n|}
apply (hoare-rule CallRec1-SamePost t [where r=measure (λ(s,p). sN)])

116

1 . ∀ τ n. Γ ,(
⋃

n {({| Ń = n|} ∩ {| Ń < τN |}, Ŕ := CALL Fac(Ń),
{| Ŕ = fac n|}, {})})

`t({τ} ∩ {| Ń = n|})
IF Ń = 0 THEN Ŕ := 1
ELSE Ŕ := CALL Fac(Ń − 1); Ŕ := Ń ∗ Ŕ FI
{| Ŕ = fac n|}

We may only assume the specification for “smaller” states {| Ń < τN |}, where
state τ gets fixed in the precondition.

apply vcg

1 .
∧

N . (N = 0 −→ 1 = fac N) ∧
(N 6= 0 −→ N − 1 < N ∧ N ∗ fac (N − 1) = fac N)

The measure function results in the proof obligation N − 1 < N in the verifi-
cation condition.

Heap The heap can contain structured values like structs in C or records in
Pascal. Our model of the heap follows Bornat [2]. We have one heap variable f
of type ref ⇒ value for each component f of type value of the struct.

A typical structure to represent a linked list in the heap is struct {int
cont; list *next} list. The structure contains two components, cont and
next. So we will also get two heap variables, cont of type ref ⇒ int and next of
type ref ⇒ ref in our state space record:

record list-vars =
next ::ref ⇒ ref
cont ::ref ⇒ ref
p::ref
q ::ref
r ::ref

In this state space next and cont are global variables and p and q are local ones.
This is given to Isabelle by the globals command.

globals list-vars = next and cont

The only effect of this command is that the return/result functions that are
created by the syntax translations will actually pass all global variables back to
the caller. References ref are isomorphic to the natural numbers and contain
Null.

The approach to specify procedures on lists basically follows [9]. From the
pointer structure in the heap we (relationally) abstract to HOL lists of references.
Then we can specify further properties on the level of HOL lists, rather then on
the heap:

117

List x h [] = (x = Null)
List x h (p # ps) = (x = p ∧ x 6= Null ∧ List (h x) h ps)
The list of references is obtained from the heap h by starting with the reference
x, following the references in h up to Null.

We define in place list reversal. The list pointed to by p in the beginning is
Ps. In the end q points to the reversed list rev Ps. The notation r→f mimics
the field selection syntax of C and is translated to ordinary function application
for field lookup and function update for field assignment.

lemma Γ`{|List ṕ ńext Ps|}
q́ := Null ;
WHILE ṕ 6= Null
INV {|∃Ps ′ Qs ′. List ṕ ńext Ps ′ ∧ List q́ ńext Qs ′ ∧

set Ps ′ ∩ set Qs ′ = {} ∧ rev Ps ′ @ Qs ′ = rev Ps|}
DO ŕ := ṕ; ṕ := ṕ→ ńext ; ŕ→ ńext := q́ ; q́ := ŕ OD
{|List q́ ńext (rev Ps)|}
by (vcg ,fastsimp+)

In the loop, pointer p sequentially steps through the list Ps and q accumulates
the reversed list. Therefore the desired outcome rev Ps can be obtained by
appending the the reversed list pointed to by p and the list pointed to by q. This
is expressed by rev Ps ′ @ Qs ′ = rev Ps in the invariant. Separation of the two
lists Ps ′ and Qs ′ is captured by the empty intersection of references: set Ps ′ ∩
set Qs ′ = {}.

The specification of list reversal above, does not capture the information
about the parts of the heap that do not change. But this information is crucial
to properly use the specification in different contexts. We encapsulate this code
fragment in a procedure and give the following, more detailed specification.

procedures Rev(p|q) =
q́ := Null ;
WHILE ṕ 6= Null
DO ŕ := ṕ; ṕ := ṕ→ ńext ; ŕ→ ńext := q́ ; q́ := ŕ OD

Rev-spec:
∀σ Ps. Γ` {|σ. List ṕ ńext Ps|} q́ := CALL Rev(ṕ)
{|List q́ ńext (rev Ps) ∧ (∀ p. p /∈ set Ps −→ (ńext p = σnext p))|}

Rev-modifies:
∀σ. Γ`{σ} q́ := CALL Rev(ṕ) {t . t may-only-modify σ in [next ,q]}

We have given two specifications this time. The first one captures the functional
behaviour and additionally expresses that all parts of the next heap not contained
in Ps, will stay the same (σ denotes the pre-state). The second one is a modifies
clause that lists all the state components that may be changed by the procedure.
Therefore we know that the cont parts will not be changed. The assertion t
may-only-modify σ in [next , p] abbreviates the following relation between the

118

final state t and the initial state σ: ∃next p. t=σ(|next :=next ,p :=p|). This
modifies clause can be exploited during verification condition generation. We
derive that we can reduce the result function in the call to Rev, which copies the
global components next and cont back, to one that only copies next back. So
cont will actually behave like a local variable in the resulting proof obligation.
This is an effective way to express separation of different pointer structures in
the heap and can be handled completely automatic during verification condition
generation. For example, reversing a list will only modify the next heap but not
some left and right heaps of a tree structure. Moreover the modifies clause itself
can be verified automatically. The following example illustrates the effect of the
modifies clause.

lemma includes Rev-spec + Rev-modifies shows
Γ`{| ćont=c ∧ List ṕ ńext Ps|} ṕ := CALL Rev(ṕ)
{| ćont=c ∧ List ṕ ńext (rev Ps)|}

apply vcg

1 .
∧

next cont p.
List p next Ps =⇒
∀nexta q .

List q nexta (rev Ps) ∧ (∀ p. p /∈ set Ps −→ nexta p = next p) −→
cont = cont ∧ List q nexta (rev Ps)

The impact of the modifies clause shows up in the verification condition. The
content heap results in the same variable before and after the procedure call
(cont = cont), whereas the next heap is described by next in the beginning and
by nexta in the end. The specification of Rev relates both next heap states.

Memory Management To model allocation and deallocation we need some
bookkeeping of allocated references. This can be achieved by an auxiliary ghost
variable alloc in the state space. A good candidate is a list of allocated references.
A list is per se finite, so that we can always get a new reference. By the length
of the list we can also handle space limitations. Allocation of memory means to
append a new reference to the allocation list. Deallocation of memory means to
remove a reference from the allocation list. To guard against dangling pointers
we can regard the allocation list: {| ṕ 6=Null ∧ ṕ ∈ set álloc|}7→ ṕ→ ćont := 2.

The use of guards is a flexible mechanism to adapt the model to the kind of
language we are looking at. If it is type safe like Java and there is no explicit
deallocation by the user, we can remove some guards. If the new instruction of
the programming language does not initialise the allocated memory we can add
another ghost variable to watch for initialised memory through guards.

119

7 Conclusion

We have presented a flexible, sound and complete Hoare calculus for sequential
imperative programs with mutually recursive procedures and dynamic proce-
dure call. We have elaborated how to model various kinds of abrupt termination
like break, continue, return and exceptions, how to deal with global vari-
ables, heap and memory management issues. The polymorphic state space of
the programming language allows us to choose the adequate representation for
the current verification task. Depending on the context we can for example de-
cide, whether it is preferable to model certain variables as unbounded integers in
HOL or as bit-vectors, without changing the program representation or logics.
Guards make it possible to customise the runtime faults we are interested in.
The usage of records as state space representation gives us a natural way to
express typing of program variables and yields comprehensible verification con-
ditions. Moreover in combination with the modifies clause we can lift separation
of heap components, which are directly expressible in the split heap model, to
the level of procedures. Crucial parts of the frame problem can then already be
handled during verification condition generation. The calculus is developed, ver-
ified and integrated in the theorem prover Isabelle and the resulting verification
environment is seamless fitting into the infrastructure of Isabelle/HOL.

References

1. C. Ballarin. Locales and locale expressions in Isabelle/Isar. In S. Berardi,
M. Coppo, and F. Damiani, editors, Types for Proofs and Programs: International
Workshop, TYPES 2003, Torino, Italy, April 30–May 4, 2003, Selected Papers,
number 3085 in Lect. Notes in Comp. Sci., pages 34–50. Springer-Verlag, 2004.

2. R. Bornat. Proving pointer programs in Hoare Logic. In R. Backhouse and
J. Oliveira, editors, Mathematics of Program Construction (MPC 2000), volume
1837 of Lect. Notes in Comp. Sci., pages 102–126. Springer-Verlag, 2000.

3. J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research
Report 1366, LRI, Université Paris Sud, March 2003.

4. J. Harrison. Formalizing Dijkstra. In J. Grundy and M. Newey, editors, Theorem
Proving in Higher Order Logics: 11th International Conference, TPHOLs’98, vol-
ume 1497 of Lect. Notes in Comp. Sci., pages 171–188, Canberra, Australia, 1998.
Springer-Verlag.

5. P. V. Homeier. Trustworthy Tools for Trustworthy Programs: A Mechanically Veri-
fied Verification Condition Generator for the Total Correctness of Procedures. PhD
thesis, Department of Computer Science, University of California, Los Angeles,
1995.

6. M. Huisman. Java program verification in higher order logic with PVS and Isabelle.
PhD thesis, University of Nijmegen, 2000.

7. B. Jacobs. Weakest precondition reasoning for Java programs with JML annota-
tions. Journal of Logic and Algebraic Programming, 58:61–88, 2004.

8. T. Kleymann. Hoare Logic and auxiliary variables. Formal Aspects of Computing,
11(5):541–566, 1999.

120

9. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. In
F. Baader, editor, Automated Deduction — CADE-19, volume 2741 of Lect. Notes
in Comp. Sci., pages 121–135. Springer-Verlag, 2003.

10. J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program provers.
In S. Graf and M. Schwartzbach, editors, TACAS00, Tools and Algorithms for the
Construction and Analysis of Systems, volume 1785 of Lect. Notes in Comp. Sci.,
pages 63–77. Springer-Verlag, 2000.

11. M.J.C. Gordon. Mechanizing programming logics in higher-order logic. In G.M.
Birtwistle and P.A. Subrahmanyam, editors, Current Trends in Hardware Verifica-
tion and Automatic Theorem Proving (Proceedings of the Workshop on Hardware
Verification), pages 387–439, Banff, Canada, 1988. Springer, Berlin.

12. W. Naraschewski and M. Wenzel. Object-oriented verification based on record
subtyping in higher-order logic. In Theorem Proving in Higher Order Logics: 11th
International Conference, TPHOLs’98, volume 1479 of Lect. Notes in Comp. Sci.
Springer-Verlag, 1998.

13. T. Nipkow. Hoare logics in Isabelle/HOL. In H. Schwichtenberg and
R. Steinbrüggen, editors, Proof and System-Reliability, pages 341–367. Kluwer,
2002.

14. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of Lect. Notes in Comp. Sci. Springer-Verlag,
2002. http://www.in.tum.de/~nipkow/LNCS2283/.

15. M. Norrish. C formalised in HOL. PhD thesis, University of Cambridge, 1998.
16. D. v. Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and

Hoare Logic. PhD thesis, Technische Universität München, 2001.
17. C. Pierik and F. S. de Boer. Computer-aided specification and verification of

annotated object-oriented programs. In Formal Methods for Open Object-Based
Distributed Systems 2003, volume 2884 of Lect. Notes in Comp. Sci., pages 163–
177. Springer-Verlag, 2002.

18. L. Prensa Nieto. Verification of Parallel Programs with the Owicki-Gries and Rely-
Guarantee Methods in Isabelle/HOL. PhD thesis, Technische Universität München,
2002.

19. M. Wenzel. Miscellaneous Isabelle/Isar examples for higher order logic.
Isabelle/Isar proof document, 2001.

121

http://www.in.tum.de/~nipkow/LNCS2283/

